ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2025-92-11-34-44

УДК: 535.36; 551.501.776

Integration of lidar and meteorological data for a comprehensive study of high-level clouds

For Russian citation (Opticheskii Zhurnal):

Брюханов И.Д., Кучинская О.И., Самохвалов И.В., Пустовалов К.Н., Ни Е.В., Животенюк И.В., Дорошкевич А.А. Интеграция лидарных и метеорологических данных для комплексного исследования облаков верхнего яруса // Оптический журнал. 2025. Т. 92. № 11. С. 34–44. http://doi.org/10.17586/1023-5086-2025-92-11-34-44

 

Bryukhanov I.D., Kuchinskaia O.I., Samokhvalov I.V., Pustovalov K.N., Ni E.V., Zhivotenyuk I.V., Doroshkevich A.A. Integration of lidar and meteorological data for a comprehensive study of high-level clouds // Opticheskii Zhurnal. 2025. V. 92. № 11. P. 34–44. http://doi.org/10.17586/1023-5086-2025-92-11-34-44

For citation (Journal of Optical Technology):
-
Abstract:

Scope of research. Optical characteristics of high-level clouds, which have a large area of coverage of the Earth’s surface and significantly affect the Earth’s radiation budget and climate. The purpose of the work. Development of an approach to the comprehensive study and assessment of the upper-level clouds characteristics as well as the determination of the conditions and frequency of their observation based on a comparison of satellite, lidar and meteorological data in order to expand the geophysical applicability of the results. Method. Data from polarization laser sensing, MODIS satellite spectroradiometer, radiosonde observations, weather stations, and atmospheric reanalysis ERA5 and MERRA-2 are used. The reanalyses are formed by combining numerical modeling of the atmosphere with heterogeneous observations, which ensures time- and space-consistent data series. Main results. The array of 2009–2024 lidar data and the distributions of high-level cloud characteristics obtained on its basis are described. The sources of atmospheric data used to predict the formation of high-level clouds and their characteristics, including cirrus with a preferred horizontal orientation of ice crystals, are listed. Practical significance. The results can be used to refine parameters in climate models and short-term cloud forecasts. They are also suitable for analyzing the distribution and dynamics of clouds in various regions. The integration of local lidar observations with large-scale meteorological information based on the analysis of optical characteristics of clouds allows the geophysical applicability of the results to be expanded significantly.

Keywords:

atmosphere, high-level clouds, anomalous backscattering, polarization lidar, backscattering phase matrix, radiosonde sensing, reanalysis, satellite spectroradiometer, meteorological observations, big data arrays

Acknowledgements:
this research was funded by the Russian Science Foundation, Grant № 24-72-10127.

OCIS codes: 010.1290, 010.3640

References:
  1. Рыбакова Ж.В. Облака и их трансформация / науч. ред. Кужевская И.В. Томск: Издат. дом ТГУ, 2020. 234 с.

Rybakova Zh.V. Clouds and their transformation [in Russian] / Ed. Kuzhevskaya I.V. Tomsk: Tomsk State University Publ., 2020. 234 p.

  1. Heymsfield A.J., Krämer M., Luebke A., et al. Cirrus clouds // Meteorological Monographs. 2017. V. 58. https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0010.1
  2. Shanks J.G., Lynch D.K. Specular scattering in cirrus clouds // Proc. SPIE. 1995. V. 2578. P. 227–238. https://doi.org/10.1117/12.228943
  3. Тарасова Т.А. Расчет потоков солнечного излучения при перистой облачности и сравнение с экспериментами / в кн. Радиационные свойства перистых облаков. М.: Наука, 1989. C. 169–176.

Tarasova T.A. Calculation of solar radiation fluxes in cirrus clouds and comparison with experiments [in Russian] / in the bookRadiation properties of cirrus clouds. Moscow: Nauka Publ., 1989. P. 169–176.

  1. Kärcher B. Formation and radiative forcing of contrail cirrus // Nature Commun. 2018. № 9. Article № 1824. https://doi.org/10.1038/s41467-018-04068-0
  2. Gierens K., Vazquez-Navarro M. Statistical analysis of contrail lifetimes from a satellite perspective // Meteorologische Zeitschrift. 2018. V. 27. № 3. P. 183–193. https://doi.org/10.1127/metz/2018/0888
  3. Кауль Б.В. Оптико-локационный метод поляризационных исследований анизотропных аэрозольных сред // Дис. докт. физ.-мат. наук. Томск, 2004. 219 с.

Kaul’ B.V. Optical-location method of polarization studies of anisotropic aerosol media [in Russian] // Dr. Sci. (Physics, Mathematics) thesis. Tomsk: V.E. Zuev Institute of Atmospheric and Oceanic Optics of the SB of the RAS, 2004. 219 p.

  1. Брюханов И.Д. Оптические свойства облаков верхнего яруса естественного и антропогенного происхождения, содержащих ориентированные кристаллы льда, по данным поляризационного лазерного зондирования // Дис. канд. физ.-мат. наук. Томск, 2022. 138 с.

Bryukhanov I.D. Optical properties of high-level clouds of natural and anthropogenic origin containing oriented ice crystals according to the data of polarization laser sensing [in Russian] // PhD (Physics, Mathematics) thesis. Tomsk: Tomsk State University, 2022. 138 p.

  1. Брюханов И.Д., Кучинская О.И., Ни Е.В. и др. Оптические и геометрические характеристики облаков верхнего яруса по данным лазерного поляризационного зондирования 2009–2023 гг. в Томске // Оптика атмосферы и океана. 2024. Т. 37. № 2. С. 105–113.

Bryukhanov I.D., Kuchinskaia O.I., Ni E.V., et al. Optical and geometrical characteristics of high-level clouds from the 2009–2023 data on laser polarization sensing in Tomsk // Atmospheric and Oceanic Optics. 2024. V. 37. № 3. P. 343–351. https://doi.org/10.1134/S1024856024700441

  1. Зуев В.В., Ельников А.В., Бурлаков В.Д. Лазерное зондирование средней атмосферы / Под общ. ред. Зуева В.В. Томск: РАСКО, 2002. 352 с.

Zuev V.V., El’nikov A.V., Burlakov V.D. Laser sensing of the middle atmosphere [in Russian] / Ed. Zuev V.V.. Tomsk: RASKO Publ., 2002. 352 p.

  1. Электронный ресурс. URL: http://weather.uwyo.edu (University of Wyoming).

Electronic resource URL: http://weather.uwyo.edu (University of Wyoming).

  1. Литвинова О.С. Влияние макроциркуляционных условий на атмосферное увлажнение юга и юго-востока Западной Сибири // Географический вестник. 2020. Т. 2. № 53. С. 100–110.

Litvinova O.S. Effect of macrocirculatory conditions on atmospheric humidification in the South and South-East of Western Siberia [in Russian] // Geographical Bulletin. 2020. V. 2. № 53. P. 100–110.

  1. Электронный ресурс URL: https://cds.climate.copernicus.eu (Copernicus Climate Data Store).

Electronic resource URL: https://cds.climate.copernicus.eu (Copernicus Climate Data Store).

  1. Гордов Е.П., Богомолов В.Ю., Генина Е.Ю. и др. Анализ региональных климатических процессов Сибири: подход, данные и некоторые результаты // Вестник НГУ. Сер. Информационные технологии. 2011. Т. 9. № 1. С. 56–66.

Gordov E.P., Bogomolov V.Yu., Genina E.Yu., et al. Analysis of regional climatic processes in Siberia: Approach, data and some results [in Russian] // Bulletin of the Novosibirsk State University. Series: Information Technology. 2011. V. 9. № 1. P. 56–66.

  1. Funing Li, Chavas D.R., Reed K.A., et al. Climatology of severe local storm environments and synoptic-scale features over North America in ERA5 reanalysis and CAM6 simulation // J. Climate. 2020. V. 33. № 19. P. 8339–8365. https://doi.org/10.1175/JCLI-D-19-0986.1
  2. Tomshin O., Solovyev V. Synoptic weather patterns during fire spread events in Siberia // Sci. Total Envir. 2024. V. 921. Atricle № 171205. https://doi.org/10.1016/j.scitotenv.2024.171205
  3. Kuchinskaia O., Bryukhanov I., Penzin M., et al. ERA5 reanalysis for the data interpretation on polarization laser sensing of high-level clouds // Rem. Sens. 2023. V. 15. № 1. Article № 109. https://doi.org/10.3390/rs15010109
  4. Gelaro R., McCarty W., Suárez M.J., et al. The modern-era retrospective analysis for research and applications, version 2 (MERRA-2) // J. Climate. 2017. V. 30. № 14. P. 5419–5454. https://doi.org/10.1175/JCLI-D-16-0758.1
  5. Tao J., Koster R.D., Reichle R.H., et al. Permafrost variability over the Northern Hemisphere based on the MERRA-2 reanalysis // The Cryosphere Discuss. 2019. V. 13. № 8. P. 2087–2110. https://doi.org/10.5194/tc-2018-119
  6. Электронный ресурс URL: http://ladsweb.nascom.nasa.gov (LAADS Web. Level 1 and Atmosphere Archive and Distribution System. Data).

Electronic resource URL: http://ladsweb.nascom.nasa.gov (LAADS Web. Level 1 and Atmosphere Archive and Distribution System. Data).