DOI: 10.17586/1023-5086-2025-92-11-69-77
УДК: 004.05.55, 621.391.8, 629.7
Circuit design solutions for the construction of a key distribution system designed to be installed on unmanned aerial vehicles
Якименко Ф.А., Каширский Д.Е., Липатов Е.И. Схемотехнические решения для построения установки распределения ключа, предназначенной для размещения на беспилотных летательных аппаратах // Оптический журнал. 2025. Т. 92. № 11. С. 69–77. http://doi.org/10.17586/1023-5086-2025-92-11-69-77
Yakimenko Ph.A., Kashirsky D.A., Lipatov E.I. Circuit design solutions for the construction of a key distribution system designed to be installed on unmanned aerial vehicles [in Russian] // Opticheskii Zhurnal. 2025. V. 92. № 11. P. 69–77. http://doi.org/10.17586/1023-5086-2025-92-11-69-77
Subject of study. Circuit design solutions for the quantum key distribution system on unmanned aerial vehicles. Aim of study. Development of a compact and energyefficient quantum key distribution system, adapted for installation on unmanned aerial vehicles and ensuring stable key generation under atmospheric propagation of optical signals. Method. Computer simulation of optical circuits and simulation of flight conditions (turbulence, atmospheric interference) to assess noise immunity with emphasis on efficiency under limited resource conditions. Main results. An atmospheric optical scheme for implementing the BB84 protocol with decoy-state technology has been proposed, a two-pass tracking system for stable alignment and synchronization under movement and vibrations has been developed, and optimal aperture parameters (diameter 4–7 cm) for operation at distances up to 1000 m have been determined. Practical significance. The developed solutions enable the creation of a mobile quantum key distribution system for rapid deployment in hard-to-reach areas. Compact size and low power consumption make the system suitable for small and medium unmanned aerial vehicles, opening opportunities for secure communication in emergency situations, monitoring of remote areas (forest fires, floods), agriculture, and infrastructure protection.
quantum communications, BB84 protocol, quantum key distribution, optical communication channel, unmanned aerial vehicle
Acknowledgements:the research was carried out with the support of the Tomsk State University Development Program (Priority 2030), project № 2.4.4.23 IG “N2V0 diamond color centers for quantum magnetometry”.
OCIS codes: 060.5625, 270.5565, 270.5568, 200.2605
References:1. Chen Y.-A., Zhang Q., Chen T.-Y., et al. An integrated space-to-ground quantum communication network over 4600 kilometers // Nature. 2021. V. 589. P. 214–219. http://doi.org/10.1038/s41586-020-03093-8
2. Lu C.-Y., Cao Y., Peng C.-Z., et al. Micius experiments in space // Rev. Mod. Phys. 2022. V. 94. 035001. P. 1–46. http://doi.org/10.1103/RevModPhys.94.035001
3. Ursin R., Tiefenbacher F., Schmitt-Manderbach T., et al. Free-space distribution of entanglement and single photons over 144 km // Nature Phys. 2006. V. 3. P. 481–486. http://doi.org/10.1038/nphys629
4. Wang J., Huberman B.A. A guide to global quantum key distribution networks / Advances in Information and Communication. Cham: Springer, 2022. P. 571–586. http://doi.org/10.1007/978-3-030-98015-3_40
5. Zhaxalykov T., Begimbayeva Y. Research of quantum key distribution protocols: BB84, B92, E91 // Scientific J. Astana IT University. 2022. V. 10. P. 4–14. http://doi.org/10.37943/QRKJ7456
6. Кулик С. Квантовая криптография. Ч. 2 // Фотоника. 2010. № 3. С. 56–60.
Kulik S. Quantum cryptography. Part 2 [in Russian] // Photonics. 2010. № 3. P. 56–60.
7. Pfennigbauer M., Leeb W.R., Aspelmeyer M., et al. Free-space optical quantum key distribution using intersatellite links // Phys. Rev. Lett. 2003. V. 9. P. 34. http://doi.org/10.1103/PhysRevLett.90.227903
8. Hughes R.J., Nordholt J.E., Derkacs D. Practical free-space quantum key distribution over 10 km in daylight and at night // New J. Phys. 2002. V. 4. № 43. P. 1–14. http://doi.org/10.1088/1367-2630/4/1/343
9. Marris E. Drones in science: Fly, and bring me data // Nature. 2013. V. 498. P. 156–158. http://doi.org/10.1038/498156a
10. Liu H.Y., Tian X.H., Gu C., et al. Drone-based entanglement distribution towards mobile quantum networks // National Sci. Rev. 2020. V. 7. № 5. P. 921–928. http://doi.org/10.1093/nsr/nwz227
11. Liu H.Y., Tian X.H., Gu C., et al. Optical-relayed entanglement distribution using drones as mobile nodes // Phys. Rev. Lett. 2021. V. 126. P. 1–6. http://doi.org/10.1103/PhysRevLett.126.020503
12. Третьяков Д.Б., Коляко А.В., Плешков А.С. и др. Генерация квантового ключа в однофотонных системах связи // Автометрия. 2016. Т. 52. № 5. С. 44–54. https://doi.org/10.15372/AUT20160507
Tret'yakov D.B., Kolyako A.V., Pleshkov A.S., et al. Quantum key generation in single-photon communication systems // Avtometriya. 2016. V. 52. №. 3. P. 44–54. http://doi.org/10.15372/AUT20160507
13. Naboulsi M.A., Sizun H., de Fornel F. Fog attenuation prediction for optical and infrared waves // J. SPIE Opt. Eng. 2004. V. 43. P. 319–329. http://doi.org/10.1117/1.1646158
14. Каширский Д.Е., Якименко Ф.А. Моделирование спектров средней скорости распределения ключа по протоколу BB84 между дронами // Сб. научн. труд. «Невская Фотоника – 2023». Всерос. научн. конф. с междунар. участием. СПб.: Университет ИТМО, 2023. С. 236. https://elibrary.ru/item.asp?id=60009234&selid=60010462
Kashirsky D.E., Yakimenko F.A. Simulation of average key distribution rate spectra according to the BB84 protocol between drones [in Russian] // Collection of Sci. Papers. "Neva Photonics-2023". All-Russian Sci. Conf. with International Participation. St. Petersburg: ITMO University, 2023. P. 236. https://elibrary.ru/item.asp?id=60009234&selid=60010462
15. Якименко Ф.А., Каширский Д.Е. Расчёт средней скорости распределения ключа по протоколу BB84 между беспилотными авиационными системами // Актуальные проблемы радиофизики: 10-я Междунар. научно-практ. конф. Томск: изд. дом Том. гос. ун-та, 2023. С. 305–306.
Yakimenko F.A., Kashirsky D.E. Calculation of average key distribution rate according to the BB84 protocol between unmanned aerial systems [in Russian] // Current Problems of Radiophysics: 10th Intern. Sci. and Practical Conf. Tomsk: Tomsk State University Publishing House, 2023. P. 305–306.
16. Якименко Ф.А. Оценка средней скорости распределения ключей в оптическом канале связи между беспилотными летательными аппаратами // 20-я Всерос. конф. студенческих научно-исслед. инкубаторов. Томск: STT, 2023. С. 85–86.
Yakimenko F.A. Assessment of average key distribution rate in the optical communication channel between unmanned aerial vehicles [in Russian] // 20th All-Russian Conf. Student Scientific Research Incubators. Tomsk: STT, 2023. P. 85–86. 17. Lo H.-K., Ma X., Chen K. Decoy state quantum key distribution // Phys. Rev. Lett. 2005. V. 94. 230504. http://doi.org/10.1103/PhysRevLett.94.230504
ru