ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2025-92-11-88-98

УДК: 612.82, 004.94

Development of a method for increasing the resolution of neuroimaging based on solving the inverse problem of electroencephalography

For Russian citation (Opticheskii Zhurnal):

Жданов А.Ю., Рыжова В.А., Коротаев В.В. Разработка методики повышения разрешения нейровизуализации на основе решения обратной задачи электроэнцефалографии // Оптический журнал. 2025. Т. 92. № 11. С. 88–98. http://doi.org/10.17586/1023-5086-2025-92-11-88-98

Zhdanov A.Y., Ryzhova V.A., Korotaev V.V. Development of a method for increasing the resolution of neuroimaging based on solving the inverse problem of electroencephalography [in Russian] // Opticheskii Zhurnal. 2025. V. 92. № 11. P. 88–98. http://doi.org/10.17586/1023-5086-2025-92-11-88-98

For citation (Journal of Optical Technology):
-
Abstract:

Subject of the study. Spatial resolution of functional image obtained by solving the inverse problem of electroencephalography. Objective of the work. Development of a method for increasing the functional image spatial resolution and the algorithm choice optimization for generating a functional image using metrics of neural activity distributions statistical analysis. Method. Modeling of the solution of the inverse electroencephalography problem was performed using the MNE-python library of the python language. A design of a computational experiment was developed using electroencephalography and functional magnetic resonance imaging data to verify the developed methodology. Main results. A method for integrating spatial filtering into neuroimaging algorithms has been developed, which allows doubling the spatial resolution of a functional image using only functional electroencephalography data. A metric for assessing the spatial resolution of a neuroimaging method is proposed, which allows unambiguously selecting an algorithm for processing a functional image. Practical significance. The method of spatial filtering of functional images allows distinguishing sources of electrophysiological signals within 20 mm. The developed criterion for assessing the quality of a functional image allows selecting the optimal image processing algorithm for a specific application problem.

Keywords:

inverse problem, neuroimaging, spatial resolution, filtering, functional image

Acknowledgements:

the study was supported by the State funding allocated to the Pavlov Institute of Physiology of the RAS (№1021062411653-4-3.1.8)

OCIS codes: 170.0170, 110.0110, 330.0330

References:

1.    Varone G., Boulila W., Driss M., et al. Finger pinching and imagination classification: A fusion of CNN architectures for IoMT-enabled BCI applications // Information Fusion. 2024. V. 101. Article 102006. https://doi.org/10.1016/j.inffus.2023.102006

2.    Angrick M., Luo S., Rabbani Q., et al. Online speech synthesis using a chronically implanted brain-computer interface in an individual with ALS // Sci. Rep. 2024. 14. Article 9617. https://doi.org/10.1038/s41598-024-60277-2

3.    Hu H., Wang Z., Zhao X., et al. A survey on brain-computer interface-inspired communications: Opportunities and challenges // IEEE Commun. Surveys & Tutorials. 2025. Feb. V. 27. Iss. 1. P. 108–139. https://doi.org/10.1109/COMST.2024.3396847

4.    Awuah W.A., Ahluwalia A., Darko K., et al. Bridging minds and machines: The recent advances of brain-computer interfaces in neurological and neurosurgical applications // World Neurosurgery. 2024. Sep. V. 189. P. 138–153. https://doi.org/10.1016/j.wneu.2024.05.104

5.    Gulyaev S.A. EEG microstate analysis and the eeg inverse problem solution as a tool for diagnosing cognitive dysfunctions in individuals who have had a mild form of COVID-19 // Human Physiology. 2022. V. 48. P. 587–597. https://doi.org/10.1134/S0362119722600217

6.    Khosravi M., Bahrami F., Moshiri B., et al. Solving the inverse problem for EEG signals when learning a new motor task using GRU neural network // 31st Intern. Conf. Electrical Engineering (ICEE). 2023. P. 910–914. https://doi.org/10.1109/ICEE59167.2023.10334704

7.    Wei H., Jafarian A., Zeidman P., et al. Bayesian fusion and multimodal DCM for EEG and fMRI // NeuroImage. 2020. May. V. 211. Article 116595. https://doi.org/10.1016/j.neuroimage.2020.116595

8.    Marino M., Mantini D. Human brain imaging with high-density electroencephalography: Techniques and applications // J. Physiol. 2024. Aug. https://doi.org/10.1113/JP286639

9.    Samuelsson J.G., Peled N., Mamashli F., et al. Spatial fidelity of MEG/EEG source estimates: A general evaluation approach // Neuroimage. 2021. Jan. 1. V. 224. Article 117430. https://doi.org/10.1016/j.neuroimage.2020.117430

10.  Engl H.W., Groetsch C.W. (ed.). Inverse and Ill-posed Problems. Academic Press, 1987. V. 4. P. 567

11.  Hämäläinen M.S., Ilmoniemi R.J. Interpreting magnetic fields of the brain: Minimum norm estimates // Med. Biol. Eng. Comput. 1994. Jan. V. 32(1). P. 35–42. https://doi.org/10.1007/BF02512476

12.  Zhdanov A.Y., Ryzhova V.A., Kravtsov P.A., et al. Research of the influence of linearly constrained spatial filtering on the spatial resolution of an EEG-based neuroimaging method for BCI usage // XXXIII Intern. Sci. Conf. Electronics (ET). Sozopol, Bulgaria. 2024. P. 1–4. https://doi.org/10.1109/ET63133.2024.10721564

13.  Dale A.M., Liu A.K., Fischl B.R., et al. Dynamic statistical parametric mapping: Combining fMRI and MEG for high-resolution imaging of cortical activity // Neuron. 2000. Apr. V. 26(1). P. 55–67. https://doi.org/10.1016/s0896-6273(00)81138-1

14.  Pascual-Marqui R.D. Standardized low-resolution brain electromagnetic tomography (sLORETA): Technical details // Methods Find. Exp. Clin. Pharmacol. 2002. V. 24. URL: https://pubmed.ncbi.nlm.nih.gov/12575463/

15.  Hauk O., Stenroos M., Treder M.S. Towards an objective evaluation of EEG/MEG source estimation methods — The linear approach // Neuroimage. 2022. Jul. V. 255. Article 119177. https://doi.org/10.1016/j.neuroimage.2022.119177

16.  Larson E., Gramfort A., Engemann D.A., et al. MNE-Python // Zenodo. Jan. 2024. Version v1.6.1. https://doi.org/10.5281/zenodo.10519948