ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2025-92-12-32-44

Automated design and optimization of high-core-count multi-ring-core fibers using one-dimensional radial refractive index distribution as parameter space

For Russian citation (Opticheskii Zhurnal):

Wang W., Liu X.C., Huang W., He Z.B., He Z.H., Song B.B. Automated design and optimization of high-core-count multi-ring-core fibers using one-dimensional radial refractive index distribution as parameter space ( Автоматизированное проектирование и оптимизация многокольцевых волокон с большим числом сердцевин с использованием одномерного радиального распределения показателя преломления в качестве параметрического пространства) [in English] // Opticheskii Zhurnal. 2025. V. 92. № 12. P. 32–44. http://doi.org/10.17586/1023-5086-2025-92-12-32-44

For citation (Journal of Optical Technology):
-
Abstract:

Subject of study. An automated design and optimization method is proposed for high-core-count multi-ring-core fibers based on one-dimensional structure vectors. Purpose of the work. To achieve efficient and flexible automated design and optimization of multi-ring-core fibers. Method. This method takes the one-dimensional core radial refractive index distribution and core pitch of the fiber structure as the parameter space, and establishes two forward mapping networks to achieve accurate prediction of the mode field area and dispersion. Combining the ideas of residual and dense connections, two network architectures, residual fully connected network and densely fully connected network, are proposed to improve feature extraction efficiency and inter-core crosstalk prediction. Next, a random generation method for the radial refractive index distribution is proposed, which allows for dynamic and flexible adjustment of the refractive index range. Main results. By combining the random generation method and prediction networks, automated design and optimization of different types of fibers can be achieved. The randomly generated fibers are automatically screened using the predefined conditions, and different types of multi-ring-core fibers are automatically designed and obtained, including 37-core and 19-core fibers. Practical significance. This approach is more efficient and flexible and may have wide applications in the automated design and optimization of multi-ring-core fibers and other circularly symmetric structures in one-dimensional parameter spaces.

Keywords:

multi-core fiber, ring-core fiber, neural network applications, automated design

Acknowledgements:

this work was funded by the College Students’ Innovation and Entrepreneurship Training Program (202310060108) and National Natural Science Foundation of China (11704283, 11804250)

OCIS codes: 060.2310

References:

1. Shao P., Wang L., Wang Y. et al. Preparation and transmission characteristics of seven-core few-mode fiber with low loss and low inter-core crosstalk // Optics Express. 2022. V. 30. № 15. P. 27746–27762. https://doi.org/10.1364/oe.465415

2. Wang J., Zhang X. Orbital angular momentum in fibers // Journal of Lightwave Technology. 2023. V. 41. № 7. P. 1934–1962. https://doi.org/10.1109/jlt.2022.3229172

3. Zahidy M., Ribezzo D., De Lazzari C. et al. Practical high-dimensional quantum key distribution protocol over deployed multicore fiber // Nature Communications. 2024. V. 15. № 1. P. 1651. https://doi.org/10.1038/s41467-024-45876-x
4. Liu J., Zhang J., Liu J. et al. 1-Pbps orbital angular momentum fibre-optic transmission // Light: Science & Applications. 2022. V. 11. № 1. P. 202. https://doi.org/10.1038/s41377-022-00889-3
5. Zhang J., Lin Z., Liu J. et al. SDM transmission of orbital angular momentum mode channels over a multiring-core fibre // Nanophotonics. 2021. V. 11. № 4. P. 873–884. https://doi.org/10.1515/nanoph-2021-047

6. Shao P., Li Z., Ma L. et al. Weakly coupled graded index heterogeneous nineteen-core few-mode fiber // Optics Express. 2023. V. 31. № 6. P. 10473–10488. https://doi.org/10.1364/oe.485965
7. Wang Y., Liu Y., Zhao W. et al. Multi-ring-air-core fiber supporting numerous radially fundamental OAM modes // Journal of Lightwave Technology. 2022. V. 40. № 13. P. 4420–4428. https://doi.org/10.1109/jlt.2022.3162852

8. Wang Y., Zhao W., Hu J. et al. 19-ring-air-core fiber supporting thousands of OAM modes for spatial division multiplexing // Optics Letters. 2022. V. 47. № 9. P. 2206–2209. https://doi.org/10.1364/ol.453079
9. Peng Q., Yang J., Zhang Y. et al. Supercontinuum generation with extended bandwidth and improved purity in graded-index ring-core fiber // Scientific Reports. 2024. V. 14. № 1. P. 30249. https://doi.org/10.1038/s41598-024-80241-4

10. Yu C.-P., Chang H.-C. Applications of the finite difference mode solution method to photonic crystal structures // Optical and Quantum Electronics. 2004. V. 36. № 1–3. P. 145–163. https://doi.org/10.1023/b:oqel.0000015636.20125.7e
11. Cucinotta A., Selleri S., Vincetti L., Zoboli M. Holey fiber analysis through the finite-element method // IEEE Photonics Technology Letters. 2002. V. 14. № 11. P. 1530–1532. https://doi.org/10.1109/lpt.2002.803375
12. Fu P.-H., Chao C.-Y., Huang D.-W. Ultracompact silicon waveguide bends designed using a particle swarm optimization algorithm // IEEE Photonics Journal. 2021. V. 13. № 1. P. 6600509. https://doi.org/10.1109/jphot.2020.3043828
13. Chen Y., Gao M., Song X. Method to design the common aperture multi-band optical system based on the PSO algorithm // Optics Express. 2021. V. 29. № 12. P. 18325–18335. https://doi.org/10.1364/oe.424903
14. Qin H., Huang W., Song B., Chen S. Hybrid method for inverse design of orbital angular momentum transmission fiber based on neural network and optimization algorithms // Journal of Lightwave Technology. 2022. V. 40. № 17. P. 5974–5985. https://doi.org/10.1109/jlt.2022.3185059
15. He Z., Du J., Chen X. et al. Machine learning aided inverse design for few-mode fiber weak-coupling optimization // Optics Express. 2020. V. 28. № 15. P. 21668–21681. https://doi.org/10.1364/oe.398157
16. Meng F., Zhao X., Ding J. et al. Use of machine learning to efficiently predict the confinement loss in anti-resonant hollow-core fiber // Optics Letters. 2021. V. 46. № 6. P. 1454–1457. https://doi.org/10.1364/ol.422511
17. Behera B., Patra G.R., Varshney S.K. et al. Machine learning-based inverse model for few-mode fiber designs // Computer Systems Science and Engineering. 2023. V. 45. № 1. P. 311–328. https://doi.org/10.32604/csse.2023.029325
18. Yu H., Huang W., Xiao F. et al. Parameter space compression and random structure automatic generation for the inverse design of photonic crystal fibers based on convolutional adversarial autoencoder // Journal of Lightwave Technology. 2024. V. 42. № 22. P. 7871–7881. https://doi.org/10.1109/jlt.2024.3364071
19. Xiao F., Huang W., Yu H., Song B. Predicting optical properties of different photonic crystal fibers from 2D structural images using convolutional neural network and transfer learning // Optics Communications. 2024. V. 558. P. 130363. https://doi.org/10.1016/j.optcom.2024.130363
20. Wang Y., Zhu K., Zhao W. et al. Seven air-core fibers with germanium-doped high-index rings supporting hundreds of OAM modes // Optics Express. 2021. V. 29. № 13. P. 19540–19550. https://doi.org/10.1364/oe.431314
21. Wang C., Li S., Li X. et al. Trench-assisted 12-core 5-LP mode fiber with a low refractive index circle and a high refractive index ring // Optics Express. 2023. V. 31. № 5. P. 7290–7302. https://doi.org/10.1364/oe.480185
22. González Pérez M.A., Nazemosadat E., Gasulla I. Multicore fiber nonuniformly-spaced optical delay line for microwave signal processing // Journal of Lightwave Technology. 2025. V. 43. № 2. P. 408–418. https://doi.org/10.1109/jlt.2024.3470023
23. Ren H., Wang Y., Geng W. et al. Trench-assisted multiring-core fiber for orbital angular momentum modes // Results in Physics. 2023. V. 52. P. 106800. https://doi.org/10.1016/j.rinp.2023.106800
24. Li Z., Shao P., Li S. et al. Low crosstalk 125 μm cladding heterogeneous six-core few-mode fiber with airhole array and trench structure // Infrared Physics & Technology. 2024. V. 136. P. 105031. https://doi.org/10.1016/j.infrared.2023.105031