ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2025-92-12-57-65

УДК: 535.8

Differentiation of paints based on natural and synthetic ultramarine of the XIX–XXI centuries by infrared spectroscopy and multifactorial analysis

For Russian citation (Opticheskii Zhurnal):

Андреев И.И., Басманов М.Д., Смолянская О.А. Дифференцирование красок на основе натурального и синтетического ультрамарина XIX–XXI вв. методом инфракрасной спектроскопии и многофакторного анализа // Оптический журнал. 2025. Т. 92. № 10. С. 57–65. http://doi.org/10.17586/1023-5086-2025-92-10-57-65

 

Andreev I.I., Basmanov M.D., Smolyanskaya O.A. Differentiation of paints based on natural and synthetic ultramarine of the XIX–XXI centuries by infrared spectroscopy and multifactorial analysis [in Russian] // Opticheskii Zhurnal. 2025. V. 92. № 10. P. 57–65. http://doi.org/10.17586/1023-5086-2025-92-10-57-65

For citation (Journal of Optical Technology):
-
Abstract:

Subject of the study. Spectral properties of paints based on synthetic ultramarine and lazurite with various binders and technical fillers of the 19th–21st centuries. Aim of study. Experimental study of reference ultramarine paints of the 19th–21st centuries by infrared spectroscopy using multivariate analysis to determine the origin of the pigment. Method. Mid-infrared spectroscopy with the attenuated total internal reflection accessory, multiparametric analysis of the spectral data array with clustering. Main results. The spectral properties of 38 reference paint samples of the 19th–21st centuries of synthetic ultramarine and lazurite were studied, technological paint fillers and natural impurities of lapis lazuli were identified according to the mid-infrared absorption spectra. It is shown that clustering of spectra after decomposition of the data array by the principal component method in the wavenumber range of 900–800 cm–1 using the k-nearest neighbor method and calculation of Euclidean distances makes it possible to determine the origin of the ultramarine pigment. Practical significance. The results of the study of the spectral properties of blue paints based on synthetic ultramarine and lapis lazuli obtained in the work will serve as the basis for the development of methods for differentiating pigments using multiparameter data analysis methods.

Keywords:

ultramarine, lapis lazuli, pigment, infrared spectroscopy, multiparametric methods, clustering

Acknowledgements:

the research was carried out with the support of a grant within the framework of the Decree of the Government of the Russian Federation dated April 09, 2010 № 220 (Agreement dated June 01, 2021 № 075-15-2021-593)

OCIS codes: 300.1030, 300.6300, 300.6340, 070.6020

References:

1. Асочакова Е.М., Коноваленко С.И. Лазуритовая минерализация бадахшанского массива // Геосферные исследования. 2018. № 2. С. 6–20. https://doi.org/10.17223/25421379/7/1
Asochakova E.M., Konovalenko S.I. Lazurite mineralization of the badakhshan massif // Geosphere Research. 2018. № 2. P. 6–20.

2. Янсон С.Ю., Пономарева Н.И. Физико-химические условия формирования лазуритовых метасоматитов // Вестник Санкт-Петербургского университета. 2001. Сер. 7. № 3. С. 68–71.
Yanson S.Yu., Ponomareva N.I. Physico-chemical conditions of the formation of lazurite metasomatites // Vestn. S.-Peterburg University. 2001. Ser. 7. Iss. 3. P. 68–71.
3. Plester J. Ultramarine blue, natural and artificial // Artists pigments / A handbook of their history and characteristics. New York: Oxford University Press, 1993. P. 37–61.
4. Kovalak S., Jankowska A., Zeidler S., Wieckowski A., Sulfur radicals embedded in various cages of ultramarine analogs prepared from zeolites // J. Solid State Chem. Volume. 2007. Iss. 3. P. 1119–1124. https://doi.org/10.1016/j.jssc.2007.01.004
5. Wang H., Zhang S., Hu S. et al. A systematic study of the synthesis conditions of blue and green ultramarine pigments via the reclamation of the industrial zeolite wastes and agricultural rice husks // Environ Sci Pollut Res. 2020. V. 27. P. 10910–10924. https://doi.org/10.1007/s11356-020-07624-8
6. Osticioli I., Mendes N.F.C., Nevin A., Gil F.P.S.C., Becucci M., Castellucci E. Analysis of natural and artificial ultramarine blue pigments using laser induced breakdown and pulsed Raman spectroscopy, statistical analysis and light microscopy // Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2009. V. 73. Iss. 3. P. 525–531. https://doi.org/10.1016/j.saa.2008.11.028
7. Rusu R.D., Simionescu B., Oancea A.V., Geba M., Stratulat L., Salajan D., Ursu L.E., Popescu M.C., Dobromir M., Murariu M., Cotofana C., Olaru M. Analysis and structural characterization of pigments and materials used in Nicolae Grigorescu heritage paintings // Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2016. V. 168. P. 218–229. https://doi.org/10.1016/j.saa.2016.06.009
8. Van der Weerd J., van Loon A., Boon J. FTIR studies of the effects of pigments on the aging of oil // Studies in conservation. 2005. V. 50(1). P. 3–22. https://doi.org/10.1179/sic.2005.50.1.3
9. Bowey J.E., Hofmeister A.M., Keppel E. Infrared spectra of pyroxenes (crystalline chain silicates) at room temperature // Monthly Notices of the Royal Astronomical Society. 2020. V. 497. Iss. 3. P. 3658–3673. https://doi.org/10.1093/mnras/staa2227123
10. Hayes P.A., Vahur S., Leito I. ATR-FTIR spectroscopy and quantitative multivariate analysis of paints and coating materials // Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2014. http://doi.org/10.1016/j.saa.2014.05.058123
11. Peets P., Kaupmees K., Vahur S. et al. Reflectance FTIR spectroscopy as a viable option for textile fiber identification // Herit Sci. 2019. V. 7. P. 93. https://doi.org/10.1186/s40494-019-0337-z
12. Sarmiento A., Pérez-Alonso M., Olivares M. et al. Classification and identification of organic binding media in artworks by means of Fourier transform infrared spectroscopy and principal component analysis // Anal. Bioanal. Chem. 2011. V. 399. V. 3601–3611. https://doi.org/10.1007/s00216-011-4677-0
13. De Queiroz Baddini A.L., de Paula Santos J.L.V., Raquel Reiner Tavares, de Paula L.S., da Costa Araújo Filho H., Renato P. Freitas. PLS-DA and data fusion of visible Reflectance // XRF and FTIR spectroscopy in the classification of mixed historical pigments / Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2022. V. 265. P. 120384. P. 1386–1425. https://doi.org/10.1016/j.saa.2021.120384
14. Gautam R., Vanga S., Ariese F. et al. Review of multidimensional data processing approaches for Raman and infrared spectroscopy // EPJ Techn Instrum. 2015. № 2. P. 8. https://doi.org/10.1140/epjti/s40485-015-0018-6
15. Wu W., Massart D.L., de Jong S. The kernel PCA algorithms for wide data: Part I. Theory and algorithms // Chemometrics and Intelligent Laboratory Systems. 1997. V. 36. Iss. 2. P. 165–172.