DOI: 10.17586/1023-5086-2025-92-12-66-76
УДК: 535.4
Diffraction neural networks based on 4F circuits with liquid crystal light modulators
Full text on elibrary.ru
Скиданов Р.В., Ханенко Ю.В., Морозов А.Е., Пронин А.С., Сорокин Д.М. Дифракционные нейронные сети на основе 4F- схемы с жидкокристаллическими модуляторами света // Оптический журнал. 2025. Т. 92. № 12. С. 66–76. http://doi.org/10.17586/1023-5086-2025-92-12-66-76
Skidanov R.V., Khanenko Yu.V., Morozov A.E., Pronin A.S., Sorokin D.M. Diffraction neural networks based on 4F circuits with liquid crystal light modulators [in Russian] // Opticheskii Journal. 2025. V. 12. № 12. P. 66–76. http://doi.org/10.17586/1023-5086-2025-92-12-66-76
The subject of the study. The main factors influencing the error of the optical implementation of mathematical transformations in the 4F scheme are considered. The optical implementation of a convolutional neural network for classification problems is considered. The aim of the work is to confirm the possibility of a mixed implementation of neural networks from optical and electronic layers. Method. The work used both mathematical modeling of the 4F system and a full-scale experiment in which the 4F system was assembled as a compact device. The main results. It is shown that the main sources of errors in the 4F system are information input/output devices. Due to their imperfection, the error rate is too high for direct implementation of mathematical calculations. But using a compact neural layer of only 10–90 neurons at the output of the 4F system makes it possible to effectively solve classification problems, so a test set of handwritten numbers from the MNIST database is classified with up to 95% reliability. Practical significance. The results obtained give hope for the use of a 4F system used in the mode of a diffraction neural network to process video streams in real time.
4F scheme, diffraction neural network, convolutional neural network, object classification, spatial light modulator
Acknowledgements:the research was carried out within the framework of the scientific program of the National Center for Physics and Mathematics, direction № 1 “National Center for Research on Supercomputer Architectures”. Stage 2023–2025
OCIS codes: 070.0070, 050.0050
References:1. Vander Lugt A. Signal detection by spatial complex filtering // IEEE Trans. Inf. Theory. 1964. V. 10. P. 139–145.
2. Престон К. Когерентные оптические вычислительные машины: Пер. с англ. Москва: Мир, 1974. 399 с.
Preston K. Coherent optical computing machines: Translated from English by Mir, 1974.
3. Акаев А.А., Майоров С.А. Когерентные оптические вычислительные машины. Ленинград: Машиностроение, 1977. 327 с.
Akaev A.A., Mayorov S.A. Coherent optical computing machines. Leningrad: Mashinostroenie, 1977. 327 p.
4. Кейсесент Д., Колфилд Х. Дж., Томпсон Б.Дж. Оптическая обработка информации / Под ред. Д. Кейсесента. М.: Мир, 1980. 349 с.
Casesent D., Caulfield H.J., Thompson B.J. Optical information processing / Ed. by D. Casesent. Moscow: Mir, 1980. 349 p.
5. Mahalanobis A., Kumar B.V.K.V., Sims S.R.F. Distance-classifier correlation filters for multiclass target recognition // Applied Optics. 1996. V. 35. № 17. P. 3127–3133. https://doi.org/10.1364/AO.35.003127
6. Javidi B., Horner J.L. Optical pattern recognition for validation and security verification // Optical engineering. 1994. V. 33. № 6. P. 1752–1756. https://doi.org/10.1117/12.170736
7. Volodin B.L., Kippelen B., Meerholz K. et al. A polymeric optical pattern-recognition system for security verification // Nature. 1996. V. 383. № 6595. P. 58–60.
8. Qadri M.T., Asif M. Automatic number plate recognition system for vehicle identification using optical character recognition // 2009 international conference on education technology and computer. IEEE. 2009. P. 335–338. https://doi.org/10.1109/ICETC.2009.54
9. Savvides M., Kumar B.V.K.V., Khosla P.K. Cancelable biometric filters for face recognition // Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004. IEEE. 2004. V. 3. P. 922–925. https://doi.org/10.1109/ICPR.2004.1334679
10. Schönleber M. Joint transform correlator subtracting a modified Fourier spectrum / M. Schönleber, G. Cedilnik, H.-J. Tiziani // Applied Optics. 1995. V. 34. № 32. P. 7532–7537. https://doi.org/10.1364/AO.34.007532
11. Mahalanobis A., Kumar B.V.K.V., Song S., Sims S.R.F., Epperson J.F. Unconstrained correlation filters // Applied Optics. 1994. V. 33. № 17. P. 3751–3759. https://doi.org/10.1364/AO.33.003751
12. Refregier P. Optimal trade-off filters for noise robustness, sharpness of the correlation peak, and Horner efficiency // Optics Letters. 1991. V. 16. № 11. P. 829–831. https://doi.org/10.1364/OL.16.000829
13. Evtikhiev N.N., Starikov N.S., Shaulskiy D.V., Starikov R.S., Zlokazov E.Yu. Invariant correlation filter with linear phase coefficient holographic realization in 4F correlator // Optical Engineering. 2011. V. 50. № 6. P. 065803-065803-5. https://doi.org/10.1117/1.3592518
14. Ge P., Li Q., Feng H., Xu Z. Image rotation and translation measurement based on double phase-encoded joint transform correlator // Applied Optics. 2011. V. 50. №27. P. 5235–5242. https://doi.org/10.1016/j.ijleo.2015.02.012
15. Lin X., Rivenson Y., Yardimci N.T., Veli M., Luo Y., Jarrahi M., Ozcan A. All-optical machine learning using diffractive deep neural networks // Science. 2018. V. 361. P. 1004–1008. https://doi.org/10.1126/science.aat8084
16. Denz C. Optical neural networks. Springer Science & Business Media, Vieweg Verlag. 1998. 458 p.
17. Lin X., Rivenson Y., Yardimci N.T., Veli M., Luo Y., Jarrahi M., Ozcan A. All-optical machine learning using diffractive deep neural networks // Science. 2018. V. 361. P. 1004–1008. https://doi.org/10.1126/science.aat8084
18. Shen Y., Harris N., Skirlo S., Prabhu M., Baehr-Jones T., Hochberg M., Sun X., Zhao S., Larochelle H., Englund D., Soljačić M. Deep learning with coherent nanophotonic circuits // Nature Photonics. 2017. V. 11. P. 441–446. https://doi.org/ 10.1038/nphoton.2017.93
19. Zhou T., Fang L., Yan T., Wu J., Li Y., Fan J., Wu H., Lin X., Dai Q. In situ optical backpropagation training of diffractive optical neural networks // Photonics Research. 2020. V. 8. № 6. P. 940–953. https://doi.org/10.1364/PRJ.389553
20. Chang J., Sitzmann V., Dun X., Heidrich W., Wetzstein G. Hybrid optical-electronic convolutional neural networks with optimized diffractive optics for image classification // Scientific Reports. 2018. V. 8. 12324. https://doi.org/ 10.1038/s41598-018-30619-y
21. Doskolovich L. L., Soshnikov D.V., Motz G.A., Byzov E.V., Bezus E.A., Bykov D.A., Kazanskiy N.L. Design of cascaded does for focusing different wavelengths to different points // Photonics. 2024. V. 11. № 9. P. 791. https://doi.org/10.3390/photonics11090791
22. Сошников Д.В., Досколович Л.Л., Бызов Е.В. Градиентный метод расчета каскадных ДОЭ и его применение в задаче классификации рукописных цифр // Компьютерная оптика. 2023. Т. 47. № 5. С. 691–701. https://doi.org/10.18287/2412-6179-CO-1314
Soshnikov D.V., Doskolovich L.L., Byzov E.V. Gradient method of cascade DOE calculation and its application in the problem of classification of handwritten digits // Computer Optics. 2023. V. 47. № 5. P. 691–701.
https://doi.org/10.18287/2412-6179-CO-1314
23. Электронный ресурс URL: https://technicalcity. b-cdn.net/ru/video/Tesla-V100-PCIe-32-GB-protivH100-PCIe-80-GB (дата обращения 04.03.2025)
Electronic resource URL: https://technicalcity.b-cdn.net/ru/video/Tesla-V100-PCIe-32-GB-protiv-H100-PCIe-80-GB (accessed 04.03.2025)
ru