DOI: 10.17586/1023-5086-2025-92-02-106-115
УДК: 535.35
Two-pulse laser fragmentation/laser-induced fluorescence of organophosphates traces
Full text on elibrary.ru
Бобровников С.М., Горлов Е.В., Жарков В.И., Мурашко С.Н. Двухимпульсная лазерная фрагментация/лазерно-индуцированная флуоресценция следов органофосфатов // Оптический журнал. 2025. Т. 92. № 2. С. 106–115. http://doi.org/10.17586/1023-5086-2025-92-02-106-115
Bobrovnikov S.M., Gorlov E.V., Zharkov V.I., Murashko S.N. Two-pulse laser fragmentation/laser-induced fluorescence of organophosphates traces [in Russian] // Opticheskii Zhurnal. 2025. V. 92. № 2. P. 106–115. http://doi.org/10.17586/1023-5086-2025-92-02-106-115
Subject of study. Laser-induced fluorescence of products of laser fragmentation of organophosphates. Aim of study. Determination of the dynamic characteristics of the process of laser fragmentation of droplet-liquid traces of organophosphate on the surface. Method. Laser fragmentation of organophosphates followed by laser excitation of fluorescence of their characteristic PO-fragments (phosphorus oxide molecules). A consistent increase in the time interval between the moments of exposure to the fragmenting and probing pulses will make it possible to trace the dynamics of the formation of fragments by the intensity of their fluorescence. Main results. Using the example of traces of triethyl phosphate on a paper surface, it is shown that the process of formation of POfragments is inertial in nature. The formation of the maximum number of fragments is observed approximately 2 μs from the moment of exposure to the fragmenting laser pulse (266 nm). It has been established that when the probing laser pulse (247.78 nm) is delayed relative to the fragmenting pulse by 2 μs, it leads to a multiple increase in the fluorescence intensity: approximately 9 times compared to the single-pulse excitation method and approximately 2.3 times with simultaneous two-pulse exposure. Practical significance. The results obtained in this work can be used to create lidar systems for detecting traces of organophosphates on the surfaces of objects.
organophosphates, laser fragmentation, phosphorus oxide, PO-fragments, laserinduced fluorescence
Acknowledgements:this work was supported by the Russian Science Foundation, Project № 20-79-10297, https://rscf.ru/project/20-79-10297/
OCIS codes: 300.2530, 300.6500, 300.6540
References:1. Rodgers M.O., Asai K., Davis D.D. Photofragmentation-laser induced fluorescence: a new method for detecting atmospheric trace gases // Appl. Opt. 1980. V. 19. № 21. P. 3597–3605. http://doi.org/10.1021/es00067a007
2. Bottorff B., Reidy E., Mielke L., Dusanter S., Stevens P.S. Development of a laser-photofragmentation laser-induced fluorescence instrument for the detection of nitrous acid and hydroxyl radicals in the atmosphere // AMT. V. 14. № 9. P. 6039–6059. http://doi.org/10.5194/amt-14-6039-2021
3. Liao W., Hecobian A., Mastromarino J., Tan D. Development of a photo-fragmentation/laser-induced fluorescence measurement of atmospheric nitrous acid // Atmos. Environ. 2006. V. 40. № 1. P. 17–26. http://doi.org/10.1016/j.atmosenv.2005.07.001
4. Liao W., Case A.T., Mastromarino J., Tan D., Dibb J.E. Observations of HONO by laser-induced fluorescence at the South Pole during ANTCI 2003 // Geophys. Res. Lett. 2006. V. 33. № 9. P. L09810-1–4. http://doi.org/10.1029/2005GL025470
5. Li B., Zhang D., Yao M., Li Z. Strategy for single-shot CH3 imaging in premixed methane/air flames using photofragmentation laser-induced fluorescence // Proc. Combust. Inst. 2017. V. 36. № 3. P. 4487–4495. http://doi.org/10.1016/j.proci.2016.07.082
6. Li B., Jonsson M., Algotsson M., Bood J., Li Z.S., Johansson O., Aldén M., Tunér M., Johansson B. Quantitative detection of hydrogen peroxide in an HCCI engine using photofragmentation laser-induced fluorescence // Proc. Combust. Inst. 2013. V. 34. № 2. P. 3573–3581. http://doi.org/10.1016/j.proci.2012.05.080
7. Han L., Gao Q., Li B., Li Z. Flame front visualization in highly turbulent jet flames using CH3 photofragmentation laser-induced fluorescence // Opt. Laser Technol. 2023. V. 159. P. 109014. http://doi.org/10.1016/j.optlastec.2022.109014
8. Leffler T., Brackmann C., Aldén M., Li Z. Laser-induced photofragmentation fluorescence imaging of alkali compounds in flames // Appl. Spectrosc. 2017. V. 71. № 6. P. 1289-1299. http://doi.org/10.1177/0003702816681010
9. Carter C.D., Skiba A.W. CH3 imaging via photo-fragmentation combined with CH planar laser-induced fluorescence employing C–X (0, 0) band excitation and detection // Combust. Flame. 2023. V. 254. P. 112851. http://doi.org/10.1016/j.combustflame.2023.112851
10. Van den Bekerom D., Richards C., Huang E., Adamovich I., Frank J.H. 2D imaging of absolute methyl concentrations in nanosecond pulsed plasma by photofragmentation laser-induced fluorescence // PSST. 2022. V. 31. P. 095018. http://doi.org/10.1088/1361-6595/ac8f6c
11. Van den Bekerom D., Tahiyat M., Huang E., Frank J., Farouk T., Farouk T. 2D-imaging of absolute OH and H2O2 profiles in a He–H2O nanosecond pulsed dielectric barrier discharge by photo-fragmentation laserinduced fluorescence // PSST. 2023. V. 32. № 1. P. 015006. http://doi.org/10.1088/1361-6595/acaa53
12. Wu D.D., Singh J.P., Yueh F.Y., Monts D.L. 2,4,6-Trinitrotoluene detection by laser-photofragmentation–laser-induced fluorescence // Appl. Opt. 1996. V. 35. № 21. P. 3998–4003. http://doi.org/10.1364/AO.35.003998
13. Daugey N., Shu J., Bar I., Rosenwaks S. Nitrobenzene detection by one-color laser photolysis/laser induced fluorescence of NO (v = 0-3) // Appl. Spectrosc. 1999. V. 53. № 1. P. 57–64. http://doi.org/10.1366/0003702991945227
14. Shu J., Bar I., Rosenwaks S. Dinitrobenzene detection by use of one-color laser photolysis and laser-induced fluorescence of vibrationally excited NO // Appl. Opt. 1999. V. 38. № 21. P. 4705–4710. http://doi.org/10.1364/AO.38.004705
15. Arusi-Parpar T., Heflinger D., Lavi R. Photodissociation followed by laser-induced fluorescence at atmospheric pressure and 24 °C: A unique scheme for remote Detection of Explosives // J. Appl. Opt. 2001. V. 40. № 36. P. 6677–6681. http://doi.org/10.1364/ AO.40.006677
16. Puchikin A.V., Panchenko Yu.N., Yampolskaya S.A., Andreev M.V., Prokopiev V.E. Laser-induced nitrogen oxide fluorescence from nitro compounds by 222 nm laser // J. Lumin. V. 2023. V. 263. P. 120073. http://doi.org/10.1016/j.jlumin.2023.120073
17. Puchikin A.V., Panchenko Yu. N., Yampolskaya S.A., Andreev M.V., Prokopiev V.E. Laser-induced fluorescence of vibrationally excited nitric oxide by femtosecond laser pulse // J. Lumin. V. 2024. V. 268. P. 120412. http://doi.org/10.1016/j.jlumin.2023.120412
18. Heflinger D., Arusi-Parpar T., Ron Y., Lavi R. Application of a unique scheme for remote detection of explosives // Opt. Commun. 2002. V. 204. № 1–6. P. 327–331. http://doi.org/10.1016/S0030-4018(02)01250-6
19. Shu J., Bar I., Rosenwaks S. NO and PO photofragments as trace analyte indicators of nitrocompounds and organophosphonates // Appl. Phys. B. 2000. V. 71. № 5. P. 665–672. http://doi.org/10.1007/ s003400000382
20. Bisson S.E., Headrick J.M., Reichardt T.A., Farrow R.L., Kulp T.J. A two-pulse, pump-probe method for shortrange, remote standoff detection of chemical warfare agents // Proc. SPIE. 2011. V. 8018. P. 80180Q-1–7. http://doi.org/10.1117/12.887918.
21. Bobrovnikov S.M., Gorlov E.V., Zharkov V.I. Laser-induced fluorescence of PO-photofragments of dimethyl methylphosphonate // Appl. Opt. 2022. V. 61. № 21. P. 6322–6329. http://doi.org/10.1364/AO.456005
22. Wynn C.M., Palmacci S., Kunz R.R., Rothschild M. Noncontact detection of homemade explosive constituents via photodissociation followed by laser-induced fluorescence // Opt. Express. 2010. V. 18. № 6. P. 5399–5406. http://doi.org/10.1364/OE.18.005399
23. Wynn C.M., Palmacci S., Kunz R.R., Aernecke M. Noncontact optical detection of explosive particles via photodissociation followed by laser-induced fluorescence // Opt. Express. 2011. V. 19. № 19. P. 18671–18677. http://doi.org/10.1364/OE.19.018671
24. Long S.R., Christesen S.D., Force A.P. Rate constant for the reaction of PO radical with oxygen // Chem. Phys. Lett. 1985. V. 84. № 10. P. 5965–5966. http:// doi.org/10.1063/1.450783
25. Sausa R.C., Miziolek A.W., Long S.R. State distributions, quenching, and reaction of the phosphorus monoxide radical generated in excimer laser photofragmentation of dimethyl methylphosphonate // J. Phys. Chem. 1986. V. 90. № 17. P. 3994–3998. http://doi.org/ 10.1021/j100408a033
26. Headrick J., Farrow R., Bisson S., Reichardt T., Kulp T. Detection of surface-bound organophosphate compounds with dual-pulse photofragmentation / LaserInduced Fluorescence // in Lasers, Sources and Related Photonic Devices. OSA Technical Digest Series (CD) (Optica Publishing Group. 2010) paper LWD6. https://doi.org/10.1364/LACSEA.2010.LWD6
27. Reichardt T.A., Bisson S.E., Headrick J.M., Farrow R.L., Kulp T.J. Pump-probe detection of surface-bound organophosphonate compounds // in CLEO: 2011 – Laser Applications to Photonic Applications. OSA Technical Digest (CD) (Optica Publishing Group. 2011). paper JTuE4. https://doi.org/10.1364/CLEO_AT.2011.JTuE4
28. Douglas K.M., Blitz M.A., Mangan T.P., Plane J.M.C. Experimental study of the removal of ground- and excited-state phosphorus atoms by atmospherically relevant species // J. Phys. Chem. A 2019. V. 123. P. 9469–9478. http://doi.org/10.1021/acs.jpca.9b07855
29. Douglas K.M., Blitz M.A., Mangan T.P., Westernand C.M., Plane J.M.C. Kinetic study of the reactions PO + O2 and PO2 + O3 and spectroscopy of the PO radical // J. Phys. Chem. A. 2020. V. 124. № 39. P. 7911–7926. http://doi.org/10.1021/acs.jpca.0c06106
30. Acuna A.U., Husain D., Wiesenfeld J.R. Kinetic study of electronically excited phosphorus atoms, P(32DJ, 32PJ), by atomic absorption spectroscopy // J. Chem. Phys. 1973. V. 58. № 2. P. 494–499. http://doi.org/10.1063/1.1679140
31. Sankaranarayanan S. γ-Centroids and Franck–Condon factors for the bands of A2Σ-X2Π system of PO molecule // Indian J. Phys. 1966. V. 40. P. 678–680.
32. Wong K.N., Anderson W.R., Kotlar A.J. Radiative processes following laser excitation of the A2Σ+ state of PO // J. Chem. Phys. 1986. V. 85. № 5. P. 2406–2413. http://doi.org/10.1063/1.451096
33. Smyth K.C., Mallard W.G. Two-photon ionization processes of PO in a C2H2/air flame // J. Chem. Phys. 1982. V. 77. № 4. P. 1779–1787. http://doi.org/10.1063/1.444074
34. Yin Y., Shi D., Sun J., Zhu Z. Transition probabilities of emissions and rotationless radiative lifetimes of vibrational levels for the PO radical // Astrophys. J. Suppl. Ser. 2018. V. 236. № 34. P. 1–15. http://doi.org/10.3847/1538-4365/aac16a
35. Бобровников С.М., Горлов Е.В., Жарков В.И. Эффективность лазерного возбуждения PO-фотофрагментов органофосфатов // Оптика атмосферы и океана. 2022. Т. 35. № 03. С. 175–185. http://doi.org/10.15372/ AOO20220301
Bobrovnikov S.M., Gorlov E.V., Zharkov V.I. Efficiency of laser excitation of PO-photofragments of organophosphates [in Russian] // Optics of the Atmosphere and Ocean. 2022. V. 35. № 3. P. 175–185. http://doi. org/10.15372/AOO20220301
36. Бобровников С.М., Горлов Е.В., Жарков В.И., Мурашко С.Н. Оценка эффективности лазерного возбуждения перехода B2Σ+ (v′ = 0) – X2Π (v″ = 0) оксида фосфора // Оптика атмосферы и океана. 2022. Т. 35. № 05. С. 361–368. http://doi.org/10.15372/AOO20220503
Bobrovnikov S.M., Gorlov E.V., Zharkov V.I., Murashko S.N. Evaluation of the efficiency of laser excitation of the B2Σ+ (v′ = 0) – X2Π (v″ = 0) phosphorus oxide transition [in Russian] // Optics of the Atmosphere and Ocean. 2022. V. 35. № 5. P. 361–368. http://doi.org/10.15372/AOO20220503
37. Verma R.D., Dixit M.N., Jois S.S., Nagaraj S., Singhal S.R. Emission Spectrum of the PO Molecule. Part II. 2Σ–2Σ Transitions // Can. J. Phys. 1971. V. 49. № 24. P. 3180–3200. http://doi.org/10.1139/p71-379