ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2025-92-02-116-123

УДК: 535; 58.08

The influence of external factors on the optical and structural characteristics of higher plants

For Russian citation (Opticheskii Zhurnal):

 Буханов Е.Р., Величко В.В., Липшин А.Г., Шихов В.Н., Сурин Н.А. Влияние внешних воздействий на оптические и структурные характеристики высших растений // Оптический журнал. 2025. Т. 92. № 2. С. 116–123. http://doi.org/10.17586/1023-5086-2025-92-02-116-123

Bukhanov E.R., Velichko V.V., Lipshin A.G., Shikhov V.N., Surin N.A. The influence of external factors on the optical and structural characteristics of higher plants [in Russian] // Opticheskii Zhurnal. 2025. V. 92. № 2. P. 116–123. http://doi.org/10.17586/1023-5086-2025-92-02-116-123

For citation (Journal of Optical Technology):
-
Abstract:
Subject of study. Rate of electron transfer between plant photosystems based on fluorescence
measurements and calculated density graphs of photon processes. Aim of study. Study of the structural
and optical parameters of barley grown under different conditions. Method. The morphology of
chloroplasts was examined by electron microscopy of tissue samples of barley flag leaves grown under
the same intensity of illumination in the chamber and in the field. The samples were coloured with
heavy metals and then analyzed by Hitachi HT 7700 transmission electron microscope. Chlorophyll
fluorescence parameters of the flag leaves were measured in vivo using the LI-6800 photosynthesis
system in a closed leaf chamber with a fluorimeter integrated in it. Main results. The role of
structural coloration caused by interference and diffraction of light on structural elements of a green
leaf comparable to the wavelength of light has been described only in recent years. The study also
identified a significantly denser and better ordered grana structure in the chloroplasts of barley
leaf cells grown under light culture conditions. Despite this difference, the maximum quantum
yield of photosystem II in both samples was in the range of values typical for normal physiological
state of plants. Since the transport of electrons is closely related to the spatial organization of the
photosynthetic apparatus on the thylakoid membranes of chloroplasts, denser packed grana surely
makes it possible to transport electrons more efficiently because molecular complexes involved in the
process are better arranged. It was found during the research that the electron transfer rate in plants
differ. Electron transport speed comparison shows that electrons are transferred 1.7 times faster in
the vegetation chamber compared to field environment. Thus, based on calculations and the results
of spectroscopy and electron microscopy, a connection was revealed between the density of photonic states, electron transfer speed and the occurrence of chemical reactions during photosynthesis.
Practical significance. Comparing photosynthetic parameters of the same plants grown in different
environment provides useful information concerning photosynthesis. Identification of the main
factors (quantity and quality of water, external environment, amount of nutrients, etc.) affecting the
structure and optical properties of plants will increase the productivity of agricultural products and
reduce costs by optimizing resources and technological processes.
Keywords:

photosynthesis, chloroplast, spectroscopy, growth conditions, numerical modeling

Acknowledgements:

the studies were performed on the equipment of Resource sharing center of the FRC KSC of the SB RAS

OCIS codes: 170.1420, 180.0180, 300.0300

References:

1. Теренин А.Н. Фотоника молекул красителей и родственных органических соединений. Ленинград: Наука, 1967. 616 с.
 Terenin A.N. Photonics of dye molecules and related measurements [in Russian]. Leningrad: Nauka Publ., 1967. 616 p.
2. Рабинович Е. Фотосинтез. Т. 2. М.: Иностр. литература, 1953. 651 с.  Rabinowitch E. Photosynthesis and related processes V. II. New York: Interscience Publ., 1951. 1208 p.
3. Jacquemoud S., Ustin S. Leaf optical properties. Cambridge: Cambridge University Press, 2019. 556 p.
4. Медведев С.С. Физиология растений : учебник. СПб: БХВ-Петербург, 2012. 512 с.
 Medvedev S.S. Plant physiology: Textbook [in Russian]. St. Petersburg: BHV-Peterburg, 2012. 512 p.
5. Blankenship R.E. Molecular mechanisms of photosynthesis. New York: Wiley-Blackwell, 2014. 312 p.
6. Jacobs M., Lopez-Garcia M., Phrathep O.P. et al. Photonic multilayer structure of Begonia chloroplasts enhances photosynthetic efficiency // Nat. Plants. 2016. V. 2. P. 16162. https://doi.org/10.1038/nplants.2016.162
7. Коршунов М.А., Шабанов А.В., Буханов Е.Р., Шабанов В.Ф. Влияние длиннопериодической упорядоченности в структуре растений на первичные стадии фотосинтеза // Доклады академии наук. 2018. Т. 478. № 3. С. 280. https://doi.org/10.7868/S0869565218030064
 Korshunov M.A., Shabanov A.V., Shabanov V.F., Bukhanov E.R. Effect of long-period ordering of the structure of a plant on the initial stages of photosynthesis // Doklady Physics. 2018. V. 63. № 1. https://doi. org/10.1134/S1028335818010068
8. Capretti A., Ringsmuth A.K., van Velzen J.F. et al. Nanophotonics of higher-plant photosynthetic membranes // Light Sci. Appl. 2019. V. 8. № 1. P. 13. https://doi.org/10.1038/s41377-018-0116-8
9. Bukhanov E., Shabanov A.V., Volochaev M.N., Pyatina S.A. The role of periodic structures in light harvesting // Plants. 2021. V. 10. № 9. P. 10. https://doi.org/10.3390/plants10091967
10. Шабанов А.В., Коршунов М.А., Буханов Е.Р. Исследование электромагнитного поля в одномерных фотонных кристаллах с дефектами // Комп. опт. 2017. Т. 41. № 5. С. 680–686. https://doi.org/10.18287/2412-6179-2017-41-5-680-686
 Shabanov A.V., Korshunov M.A., Bukhanov E.R. Investigation of the electromagnetic field in one-dimensional photonic crystals with defects // Computer Optics. 2017. V. 41. № 5. P. 680–686. https://doi.org/10.18287/2412-6179-2017-41-5-680-686
11. Шабанов А.В., Коршунов М.А., Буханов Е.Р. Особенности усиления электромагнитного поля и увеличение плотности фотонных состояний в растительных фотонно-кристаллических структурах // Комп. опт. 2019. Т. 43. № 2. С. 231–237. https://doi.org/10.18287/2412-6179-2019-43-2-231-237
 Shabanov A.V., Korshunov M.A., Bukhanov E.R. Features of the amplification of the electromagnetic field and the density of states of photonic crystal structures in plants // Computer Optics. 2019. V. 43. № 2. P. 231–237. https://doi.org/10.18287/2412-6179-2019-43-2-231-237
12. Garab G. Self-assembly and structural-functional flexibility of oxygenic photosynthetic machineries: Personal perspectives // Photos. Res. 2016. V. 127. № 1. P. 131–150. https://doi.org/10.1007/s11120-015-0192-z
13. Ветров С.Я., Тимофеев И.В., Шабанов В.Ф. Локализованные моды в хиральных фотонных структурах // Успехи физических наук. 2020. Т. 190. № 1. С. 37–62. https://doi.org/10.3367/ufne.2018.11.038490
 Vetrov S.Ya., Timofeev I.V., Shabanov V.F. Localized modes in chiral photonic structures // Phys. Usp. 2020. V. 63. № 1. P. 33–56. https://doi.org/10.3367/ ufne.2018.11.038490
14. Электронный ресурс URL: https://power.larc.nasa. gov/data-access-viewer/ (Просмотр данных NASA / Предоставление наборов солнечных и метеорологических данных исследований НАСА)

Electronic resource URL: https://power.larc.nasa.gov/ data-access-viewer/ (Data Access Viewer NASA / Provides solar and meteorological data sets from NASA research)
15. Гайер Г. Электронная гистохимия. М.: Мир, 1974. 488 с.
 Gayer G. Electronic histochemistry [in Russian]. Moscow: Mir, 1974. 488 p.
16. Шабанов В.Ф., Ветров С.Я., Шабанов А.В. Оптика реальных фотонных кристаллов. Новосибирск: Издво СО РАН, 2005. 209 c.
 Shabanov V.F., Vetrov S.Y., Shabanov A.V. Optics of real photonic crystals [in Russian]. Novosibirsk: SB RAS Publisher, 2005. 209 p.
17. Vats N., John S., Busch K. Theory of fluorescence in photonic crystals // Phys. Rev. A. 2002. V. 65. P. 043808. https://doi.org/10.1103/PhysRevA.65.043808
18. Schmidtkea J., Stille W. Fluorescence of a dye-doped cholesteric liquid crystal film in the region of the stop band: theory and experiment // The Europ. Phys. J. B. 2003. V. 31. P. 179–194. https://doi.org/10.1140/epjb/e2003-00022-x
19. D’Aguanno G., Mattiucci N., Scalora M. et al. Density of modes and tunneling times in finite one-dimensional photonic crystals: A comprehensive analysis // Phys. Rev. E. 2004. V. 70. P. 016612. https://doi.org/10.1103/ PhysRevE.70.016612
20. D’Aguanno G., Centini M., Scalora M. et al. Photonic band edge effects in finite structures and applications to x2 interactions // Phys. Rev. E. 2001. V. 64. P. 016609. https://doi.org/10.1007/978-3-662-05144-3_6
21. Lichtenthaler H.K., Buschmann C., Knapp M. How to correctly determine the different chlorophyll fluorescence parameters and the chlorophyll fluorescence decrease ratio RFd of leaves with the PAM fluorometer // Photosynthetica. 2005. V. 43. № 3. P. 379–373. https://doi.org/10.1007/s11099-005-0062-6
22. Kazanov D.R., Poshakinskiy A.V., Shubina T.V. Slow light in resonant photonic crystals with a complex unit cell // JETP Lett. 2017. V. 105. P. 8–12. https://doi. org/10.1134/S0021364017010118
23. Цибульникова А.В., Землякова Е.С., Слежкин В.А., Самусев И.Г., Лятун И.И., Артамонов Д.А., Зюбин А.Ю., Брюханов В.В. Фотофизика генерации синглетного кислорода в пленках хитозана с экстрактом плодов калины (Viburnum opulus L.) под влиянием плазмонов на модифицированной поверхности титана // Оптический журнал. 2024. Т. 91. № 5. С. 72–84. https://doi.org/10.17586/1023-5086-2024-91-05-72-84
 Tsibulnikova A.V., Zemlyakova E.S., Slezhkin V.A., Samusev I.G., Lyatun I.I., Artamonov D.A., Zyubin A.Y., Bryukhanov V.V. Photophysics of singlet oxygen generation in chitosan films with viburnum fruit extract (Viburnum opulus L.) under the influence of plasmons on a modified titanium surface // Journal of Optical Technogy. 2024. V. 91. № 5. P. 334–341. https://doi.org/10.1364/JOT.91.000334
24. Валиев Д.Т., Степанов С.А., Пайгин В.Д., Двилис Э.С., Хасанов О.Л., Шевченко И.Н., Деулина Д.Е. Исследование многослойных керамик YAG/YSZ, активированных ионами редкоземельных элементов // Оптический журнал. 2024. Т. 91. № 5. С. 105–114. https://doi.org/10.17586/1023-5086-2024-91-05-105-114
 Valiev D.T., Stepanov S.A, Paygin V.D., Dvilis E.S., Khasanov O.L., Shevcheko I.N., Deulina D.E. Investigation of YAG/YSZ multilayer ceramics doped with rare earth ions [in Russian] // Journal of Optical Technology. 2024. V. 91. № 5. P. 354–359. https://doi.org/10.1364/JOT.91.000354