ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2025-92-02-16-24

УДК: 535.36:534.23

Influence of distance between sections of phased ultrasound transducer on the number of resolved elements of acousto-optic deflector

For Russian citation (Opticheskii Zhurnal):

Никитин П.А. Влияние расстояния между секциями фазированного излучателя ультразвука на число разрешённых элементов акустооптического дефлектора // Оптический журнал. 2025. Т. 92. № 2. С. 16–24. http://doi.org/10.17586/1023-5086-2025-92-02-16-24

 

Nikitin P.A. Influence of distance between sections of phased ultrasound transducer on the number of resolved elements of acousto-optic deflector [in Russian] // Opticheskii Zhurnal. 2025. V. 92. № 2. P. 16–24. http://doi.org/10.17586/1023-5086-2025-92-02-16-24

For citation (Journal of Optical Technology):
-
Abstract:

Subject of study. Acousto-optic deflector based on an optically isotropic medium using a sectioned phased ultrasound transducer. Aim of study. Determination of the optimum gap between ultrasound transducer sections to realize an effective terahertz radiation deflector. Method. Numerical modeling of acousto-optic interaction under the low diffraction efficiency approximation. Main results. The effect of the section gap and the number of sections of the ultrasound transducer on the number of resolved elements decreases with increasing number of sections and does not exceed 10%. Practical significance. The determining criterion for selecting the optimal gap between ultrasound transducer sections for an acousto-optic deflector is the diffraction efficiency and angular separation of radiation beams at the output of the device.

Keywords:

acousto-optic interaction, diffraction, acoustic field, sectioned transducer

Acknowledgements:

the work was funded by the Ministry of Science and Higher Education of the Russian Federation under State contract № FFNS-2022-0009 and was performed using the equipment of the Center for Collective Use of the Scientific and Technological Center of Unique Instrumentation of the Russian Academy of Sciences (STC UI RAS)/

OCIS codes: 050.1940, 070.1060, 170.7170, 260.3090

References:

1. Sarabalis C.J., Laer R.V., Patel R.N., Dahmani Y.D., Jiang W., Mayor F.M., Safavi-Naeini A.H. Acoustooptic modulation of a wavelength-scale waveguide // Optica. 2021. V. 8. № 4. P. 477–483. https://doi.org/10.1364/OPTICA.413401
2. Duocastella M., Surdo S., Zunino A., Diaspro A., Saggau P. Acousto-optic systems for advanced microscopy // Journal of Physics: Photonics. 2021. V. 3. № 1. P. 012004. https://doi.org/10.1088/2515-7647/abc23c
3. Korablev O.I., Belyaev D.A., Dobrolenskiy Yu.S., Trokhimovskiy A.Y., Kalinnikov Yu.K. Acousto-optic tunable filter spectrometers in space missions [Invited] // Appl. Opt. 2018. V. 57. № 10. P. C103–C119. https://doi.org/10.1364/AO.57.00C103
4. Maak P., Barocsi A., Feher A., Veress M., Mihajlik G., Rozsa B., Koppa P. Acousto-optic deflector configurations optimized for multiphoton scanning microscopy // Optics Communications. 2023. V. 530. P. 129213. https://doi.org/10.1016/j.optcom.2022.129213
5. Kastelik J.-C., Dupont S., Yushkov K.B., Gazalet J. Frequency and angular bandwidth of acousto-optic deflectors with ultrasonic walk-off // Ultrasonics. 2013. V. 53. № 1. P. 219–224. https://doi.org/10.1016/j.ultras.2012.06.003
6. Electronic resource URL: https://sphotonics.ru/catalog/aobd/
7. Electronic resource URL: https://isomet.com/acousto_optic_deflectors.html
8. Handbook of optical constants of solids / Ed. by Palik E.D. V. 1. 1-st ed. N.Y.: Academic Press, 1985. 804 p.
9. Porokhovnichenko D.L., Voloshinov V.B., Dyakonov E.A., Komandin G.A., Spektor I.E., Travkin V.D. Application potential of paratellurite and iodic acid crystals for acousto-optics in the terahertz range // Physics of Wave Phenomena. 2017. V. 25. № 2. P. 114–118. http://doi.org/10.3103/S1541308X17020066
10. Vogel T., Dodel G. Acousto-optic modulation in the far-infrared // Infrared Physics. 1985. V. 25. № 1–2. P. 315–318. https://doi.org/10.1016/0020-0891(85)90097-1
11. Durr W. Acousto-optic interaction in gases and liquid bases in the far infrared // Int. J. Infrared Millim. Waves. 1986. V. 7. № 10. P. 1537–1558. https://doi.org/10.1007/BF01010756
12. Балакший В.И., Парыгин В.Н., Чирков Л.Е. Физические основы акустооптики. М.: Радио и связь, 1985. 280 с.
 Balakshy V.I., Parygin V.N., Chirkov L.E. Physical principles of acousto-optics. [in Rissian]. M.: Radio i Sviaz, 1985. 280 p.
13. Aboujeib J., Perennou A., Quintard V., Bihan J.L. Planar phased-array transducers associated with specific electronic command for acousto-optic deflectors // J. Opt. A: Pure Appl. Opt. 2007. V. 9. № 5. P. 463–469. https://doi.org/10.1088/1464-4258/9/5/007
14. Antonov S.N. Acousto-optic deflector: A new method to increase the efficiency and bandwidth // Technical Physics. 2016. V. 61. № 10. P. 1597–1601. https://doi.org/10.1134/S1063784216100042
15. Gordon E.I. A review of acoustooptical deflection and modulation devices // Proc. of the IEEE. 1966. V. 54. № 10. P. 1391–1401. https://doi.org/10.1364/AO.5. 001629
16. Cai L., Gorbach A. V., Wang Y., Hu H., Ding W. Highly efficient broadband second harmonic generation mediated by mode hybridization and nonlinearity patterning in compact fiber-integrated lithium niobate nanowaveguides // Scientific reports. 2018. V. 8. № 1. P. 12478. https://doi.org/10.1038/s41598-018-31017-0
17. Nikitin P.A. Simulation of acousto-optic deflector of terahertz radiation with a four-sectioned ultrasound transducer // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. № 11. P. 1755–1759. https://doi.org/10.3103/ S1062873823704026
18. Никитин П.А. Аналитическая углочастотная зависимость для акустооптического дефлектора, использующего секционированный излучатель ультразвука // Автометрия. 2024. Т. 60. № 3. С. 48–54. https:// doi.org/10.15372/AUT20240305
 Nikitin P.A. Analytical angular frequency dependence for an acousto-optic deflector using a partitioned ultrasound emitter [in Russian] // Avtometrya. 2024. V. 60. № 3. P. 48–54. https://doi.org/10.15372/AUT20240305