ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2025-92-02-25-40

УДК: 53.06

Two-layer electromagnetic shielding sandwich structures based on irregular micromeshes

For Russian citation (Opticheskii Zhurnal):

Воронин А.С., Дамарацкий И.А., Макеев М.О., Рыженко Д.С., Михалёв П.А., Александровский А.С., Фадеев Ю.В., Иванченко Ф.С., Хартов С.В. Двухслойные радиоэкранирующие сэндвич-структуры на основе нерегулярных микросеток // Оптический журнал. 2025. Т. 92. № 2. С. 25–40. http:// doi.org/10.17586/1023-5086-2025-92-02-25-40

 

 Voronin A.S., Damaratskiy I.A., Makeev M.O., Ryzhenko D.S., Mikhalev P.A., Aleksandrovskiy A.S., Fadeev Yu.V., Ivanchenko F.S., Khartov S.V. Two-layer EMI shielding sandwich structures based on irregular micromeshes [in Russian] // Opticheskii Zhurnal. 2025. Т. 92. № 2. P. 25–40. http://doi.org/10.17586/1023-5086-2025-92-02-25-40

For citation (Journal of Optical Technology):
-
Abstract:

Research subject. In this work, we investigated the spectral properties of irregular silver micromeshes and sandwich structures based on them in the visible and radio frequency ranges. Irregular silver micromeshes were formed using a self-organized template obtained by cracking a thin film of egg white. Aim of study. Development of a method for producing irregular silver micromeshes, more than 500 nm thick, with low surface resistance and high transmission in the visible range. Production of sandwich structures based on irregular silver micromeshes, demonstrating a shielding factor in the radio frequency range of at least 60 dB. Results. We have developed a method for local peeling off the perimeter of self-organized template cells, which allows us to significantly increase the thickness of the deposited silver to values exceeding 500 nm. Increasing the thickness of the deposited metal is a critical factor for improving the optoelectric characteristics of irregular silver micromeshes. Two-layer sandwich structures are formed based on the obtained micromeshes. Sandwich structures consisting of irregular silver micromeshes based on a template with a partially peeled off perimeter of cells demonstrate a shielding coefficient of 71.01 dB in the range of 1–7 GHz with a transmittance in the visible range of 80.02%. Practical significance. Sandwich structures based on irregular silver micromeshes based on a template with a partially peeled cell perimeter are promising for shielding optically transparent objects and information output devices. The sandwich structures obtained in the work surpass the optically transparent radio emission screens used in practice, according to the set of parameters of the shielding coefficient — optical transmission — production cost.

Keywords:

self-assembled template, egg white, partial detachment of cell perimeter, irregular microgrid, radio-shielding sandwich structure

Acknowledgements:

 the fabrication of silver irregular microgrids and sandwich structures based on them, as well as the study of their optoelectric and shielding properties, was carried out with the financial support of the Ministry of Science and Higher Education of the Russian Federation within the framework of State Assignment No. FSFN-2024–0016. The production and study of the self-organized template, as well as the operation of partial detachment of the cell perimeter, were carried out with the financial support of the Ministry of Science and Higher Education of the Russian Federation within the framework of State Assignment No. FWES-2024-0026. The studies using the scanning electron microscopy method were carried out on the equipment of the Krasnoyarsk Regional Center for Collective Use of the Federal Research Center KSC SB RAS.

OCIS codes: 160.0160, 160.3900, 160.4670

References:

1. Van Eck W. Electromagnetic radiation from video display units: An eavesdropping risk? // Computers & Security. 1985. V. 4. № 4. P. 269–286. https://doi.org/10.1016/0167-4048(85)90046-X
2. Kuhn M.G. Electromagnetic eavesdropping risks of flat-panel displays. In: Martin D., Serjantov A. (eds). Privacy enhancing technologies. PET 2004. Lecture Notes in Computer Science. V. 3424. Berlin, Heidelberg: Springer, 2004. P. 344. https://doi.org/10.1007/ 11423409_7
3. Liang Z., Zhao Z., Pu M., Luo J., Xie X., Wang Y., Guo Y., Ma X., Luo X. Metallic nanomesh for high-performance transparent electromagnetic shielding // Opt. Mater. Express. 2020. V. 10. P. 796–806. https://doi.org/10.1364/OME.386830
4. Osipkov A.S., Makeev M.O., Konopleva E.A., Kudrina N.S., Gorobinskiy L.A., Mikhalev P.A., Ryzhenko D.S., Yurkov G.Yu. Optically transparent and highly conductive electrodes for acousto-optical devices // Mater. 2021. V. 14. № 23. P. 7178. https://doi.org/10.3390/ma14237178
5. Chung S.-I., Kim P.K., Ha T.-G., Han J.T. High-performance flexible transparent nanomesh electrodes // Nanotechnol. 2019. V. 30. P. 125301. https://doi.org/10.1088/1361-6528/aafb94
6. Han Y., Lin J., Liu Y., Fu H., Ma Y., Jin P., Tan J. Crackle template based metallic mesh with highly homogeneous light transmission for high-performance transparent EMI shielding // Sci. Rep. 2016. V. 6. P. 25601. https://doi.org/10.1038/srep25601
7. Voronin A.S., Fadeev Y.V., Govorun I.V., Podshivalov I.V., Simunin M.M., Tambasov I.A., Karpova D.V., Smolyarova T.E., Lukyanenko A.V., Karacharov A.A., Nemtsev I.V., Khartov S.V. Cu-Ag and Ni-Ag meshes based on cracked template as efficient transparent electromagnetic shielding coating with excellent mechanical performance // J. Mater. Sci. 2021. V. 56. P. 14741–14762. https://doi.org/10.1007/s10853-021-06206-4
8. Jia L.C., Yan D.X., Liu X.F., Ma R.J., Wu, H.Y., Li Z.M. Highly efficient and reliable transparent electromagnetic interference shielding film // ACS Appl. Mater. Interfaces. 2018. V. 10. P. 11941–11949. https:// doi.org/10.1021/acsami.8b00492
9. Wang H., Ji C., Zhang C., Zhang Y., Zhang Z., Lu Z., Tan J., Guo L. J. Highly transparent and broadband electromagnetic interference shielding based on ultrathin doped Ag and conducting oxides hybrid film structures // ACS Appl. Mater. Interfaces. 2019. V. 11. P. 11782–11791. https://doi.org/10.1021/acsami.9b00716
10. Shen S., Chen S.-Y., Zhang D.-Y., Liu Y.-H. High-performance composite Ag-Ni mesh based flexible transparent conductive film as multifunctional devices // Opt. Exp. 2018. V. 26. № 21. P. 27545–27554. https:// doi.org/10.1364/OE.26.0275465
11. Li M., Zarei M., Mohammadi K., Walker S.B., LeMieux M., Leu P.W. Silver meshes for record-performance transparent electromagnetic interference shielding // ACS Appl. Mater. Interfaces. 2023. V. 15. № 25. P. 30591–30599. https://doi.org/10.1021/acsami.3c02088
12. Zhang Y., Dong H., Li Q. Double-layer metal mesh etched by femtosecond laser for high-performance electromagnetic interference shielding window // RSC Adv. 2019. V. 9. P. 22282. https://doi.org/10.1039/C9RA03519B
13. Chen W., Liu L.-X., Zhang H.-B., Yu, Z.-Z. Flexible, transparent, and conductive Ti3C2Tx MXene–Silver nanowire films with smart acoustic sensitivity for high-performance electromagnetic interference shielding // ACS Nano. 2020. V. 14. P. 16643– 16653. https://doi.org/10.1021/acsnano.0c01635
14. Voronin A.S., Fadeev Y.V., Ivanchenko F.S., Dobrosmyslov S.S., Makeev M.O., Mikhalev P.A., Osipkov A.S., Damaratsky I.A., Ryzhenko D.S., Yurkov G.Y., Simunin M.M., Volochaev M.N., Tambasov I.A., Nedelin S.V., Zolotovsky N.A., Bainov D.D., Khartov S.V. Original concept of cracked template with controlled peeling of the cells perimeter for high performance transparent EMI shielding films // Surf. and Interfaces. 2023. V. 38. P. 102793. https://doi.org/10.1016/j.surfin.2023.102793
15. Han B., Pei K., Huang Y., Zhang X., Rong Q., Lin Q., Guo Y., Sun T., Guo C., Carnahan D., Giersig M., Wang Y., Gao J., Ren Z., Kempa K. Uniform self-forming metallic network as a high-performance transparent conductive electrode // Adv. Mater. 2014. V. 26. P. 873–877. https://doi.org/10.1002/adma.201302950
16. Halman J.I., Ramsey K.A., Thomas M., Griffin A. Predicted and measured transmission and diffraction by a metallic mesh coating // Window and Dome Technologies and Materials XI: Orlando, Florida, United States. April 15–16. 2009. P. 73020Y. https://doi.org/10.1117/12.818760
17. Zhong H., Han Y., Lin J., Jin P. Pattern randomization: an efficient way to design high-performance metallic meshes with uniform stray light for EMI shielding // Opt. Exp. 2020. V. 28. № 5. P. 7008–7017. https:// doi.org/10.1364/OE.386921
18. Liao D., Zheng Y., Ma X., Fu Y. Honeycomb-ring hybrid random mesh design with electromagnetic interference (EMI) shielding for low stray light // Opt. Exp. 2023. V. 31. № 20. P. 32200–32213. https://doi.org/ 10.1364/OE.500407
19. Lee H.B., Jin W.-Y., Ovhal M.M., Kumar N., Kang J.-W. Flexible transparent conducting electrodes based on metal meshes for organic optoelectronic device applications: a review // J. Mater. Chem. C. 2019. V. 7. P. 1087–1110. https://doi.org/10.1039/C8TC04423F
20. Sharma A.K., Mishra K.K., Raghuramaiah M., Naik P.A., Gupta P.D. Design and performance characteristics of an electromagnetic interference shielded enclosure for high voltage Pockels cell switching system // Sadhana. 2007. V. 32. № 3. P. 235–242. https://doi.org/10.1007/ s12046-007-0020-z
21. Klein C.A. Simple formulas for estimating the microwave shielding effectiveness of Ec-coated optical windows // Window and Dome Technologies and Materials. Orlando, Florida, United States. September 11, 1989. P. 1112. https://doi.org/10.1117/12.960783
22. Wang H., Lu Z., Liu Y., Tan J., Ma L., Lin S. Doublelayer interlaced nested multi-ring array metallic mesh for high-performance transparent electromagnetic interference shielding // Opt. Lett. 2017. V. 42. № 8. P. 1620–1623. https://doi.org/10.1364/OL.42.001620
23. Zarei M., Li M., Papazekos E., Su Y.-D., Sinha S., Walker S.B., LeMieux M., Ohodnicki P.R., Leu P.W. Single- and double-layer embedded metal meshes for flexible, highly transparent electromagnetic interference shielding // Adv. Mater. Technol. 2024. V. 9. P. 2302057. https://doi.org/10.1002/admt.202302057
24. Jiang Z., Zhao S., Huang W., Chen L., Liu Y.-H. Embedded flexible and transparent double-layer nickelmesh for high shielding efficiency // Opt. Exp. 2020.  V. 28. № 18. P. 26531–26542. https://doi.org/10.1364/ OE.401543
25. Chen Q., Huang L., Wang X., Yuan Y. Transparent and flexible composite films with excellent electromagnetic interference shielding and thermal insulating performance // ACS Appl. Mater. Interfaces. 2023. V. 15. № 20. P. 24901–24912. https://doi.org/10.1021/ acsami.3c03140
26. Gu J., Hu S., Ji H., Feng H., Zhao W., Wei J., Li M. Multi-layer silver nanowire/polyethylene terephthalate mesh structure for highly efficient transparent electromagnetic interference shielding // Nanotechnol. 2020. V. 31. P. 185303. https://doi.org/10.1088/ 1361-6528/ab6d9d
27. Yuan C., Huang J., Dong Y., Huang X., Lu Y., Li J., Tian T., Liu W., Song W. Record-high transparent electromagnetic interference shielding achieved by simultaneous microwave Fabry–Pérot interference and optical antireflection // ACS Appl. Mater. Interfaces. 2020. V. 12. № 23. P. 26659–26669. https://doi.org/10.1021/acsami.0c05334
28. https://metamaterial.com/