DOI: 10.17586/1023-5086-2025-92-02-3-15
УДК: 535.514
Polarizing anamorphic prism with collinear input and output laser beams
Full text on elibrary.ru
Давыдов Б.Л., Крылов А.А. Поляризующая призма-анаморфот с коллинеарными входным и выходным пучками лазерного излучения // Оптический журнал. 2025. Т. 92. № 2. С. 3–15. http://doi.org/10.17586/1023-5086-2025-92-02-3-15
Davydov B.L., Krylov A.A. Polarizing anamorphic prism with collinear input and output laser beams [in Russian] // Opticheskii Zhurnal. 2025. V. 92. № 2. P. 3–15. http://doi.org/10.17586/1023-5086-2025-92-02-3-15
Subject of study. An optical prism made from contemporary birefringent crystals of YVO4, GdVO4, TiO2 or α-BaB2O4 for size variation (anamorphosis) of a collimated laser beam that also possesses a polarizing effect. Aim of study. Numerical modeling of the crystalline anamorphic prism with collinear (paraxial) input and output laser beams that also possesses a polarizing effect, on the basis of anisotropic crystals with large refraction and birefringence indices as well as much higher thermoconductivity coefficients as compared to common optical glasses. Method. An essential feature of prism design is double total internal reflection of laser radiation inside a prism that allows to realize collinearity of an input non-polarized beam and an output beam with p-polarization (p-beam). Strong birefringence of the proposed crystals makes a prism to be a high-quality polarizer as well with two collimated linearly polarized beams propagating at different angles at its output. The prism is characterized by minimal reflection losses owing to refraction at Bruster angle of an output p-beam at one of the prism faces and normal incidence on the input face with interferometric antireflection coating. Main results. It is obtained that with acceptable reflection loss values for an output p-beam at the level of 1%, anamorphic prisms designed for definite operation wavelengths, can be applied in much broader spectral bands. In this context it is worth emphasizing a prism from undoped crystalline GdVO4, in which it is observed a weak dependence of output beam parameters on an operation wavelength in the broad spectral window between 0,4 μm an 2,0 μm. Taking into account the property of “spectral independence” together with high refraction and birefringence indices for both ordinary and extraordinary waves, undoped GdVO4 crystal can be used in polarization optics for developing elements with a weak spectral dependence of output parameters. Practical significance. The results of numerical modeling of anamorphic polarizing prisms can be useful in designing prototypes of the devices for high-power laser diode radiation coupling into multimode fibers as well as for developing laser scanners and deflectors.
laser radiation, anamorphic prism, crystalline polarizer, collinear optical beams, Bruster refraction, birefringence, YVO4, GdVO4, TiO2, α-BaB2O4 crystals
OCIS codes: 120.4640, 230.1360, 230.5480, 240.5440, 260.1180
References:1. Электронный ресурс URL: https://fiberlaser.ru/(ООО НТО «ИРЭ–ПОЛЮС» / Каталог продукции: мощные волоконные лазеры)
Electronic resource URL: https://fiberlaser.ru/(“IRE–POLUS” group Ltd / Product list: powerful fiber lasers)
2. Электронный ресурс URL: http://www.ipgphotonics. com (компания «IPG Photonics»/ Каталог продукции: мощные волоконные лазеры)
Electronic resource URL: http://www.ipgphotonics. com («IPG Photonics» company / Product list: powerful fiber lasers)
3. Wu W., Han P., Shi S., Wu F. Design and performance analysis of a single-unit polarizing beam-splitting prism based on negative refraction in a uniaxial crystal // Applied Optics. 2019. V. 58. № 26. P. 7063–7066. https://doi.org/10.1364/AO.58.007063
4. Chen Q., Dou Z. Analysis and application of negative refraction of YVO4 // Applied Physics. 2019. V. 9. № 12. P. 504–510. https://doi.org/10.12677/APP.2019.912062
5. Давыдов Б.Л. Отражение лазерного излучения от оптически анизотропного кристалла с сохранением поляризационной экстинкции // Оптический журнал. 2020. Т. 87. № 7. С. 65–72. http://doi.org/
10.17586/1023-5086-2020-87-07-65-72
Davydov B.L. Laser beam reflection from an optically anisotropic crystal retaining polarization extinction // Journal of Optical Technology. 2020. V. 87. № 7. P. 434–439. https://doi.org/10.1364/JOT.87.000434
6. Давыдов Б.Л. Монопризменный поляризатор для лазерного излучения повышенной мощности // Оптический журнал. 2022. Т. 89. № 6. С. 33–42. http://doi.org/10.17586/1023-5086-2022-89-06-33-42
Davydov B.L. Single-prism polarizer for laser emission with higher power // Journal of Optical Technology. 2022. V. 89. № 6. P. 332–338. https://doi.org/10.1364/JOT.89.000332
7. Электронный ресурс URL: http://www.edmundoptics. com (Компания «Edmund Optics» / Каталог продукции: анаморфирующие призмы).
Electronic resource URL: http://www.edmundoptics. com («Edmund Optics » Company / Product list: anamorphic prisms).
8. Fantone S.D. Anamorphic prism: a new type // Applied Optics. 1991. V. 30. № 34. P. 5008–5009. https://doi.org/10.1364/AO.30.005008
9. Мустель Е.Р., Парыгин В.Н. Методы модуляции и сканирования света. Москва: Наука, 1970. 214 с.
Mustel E.R., Parygin V.N. Methods of light modulation and scanning [in Russian]. Moscow: Nauka, 1970. 214 p.
10. Давыдов Б.Л., Ягодкин Д.И. Компактные призмы для поляризационного разделения пучков волоконных лазеров // Квантовая электроника. 2005. Т. 35. № 11. С. 1064–1070. https://doi.org/10.1070/QE2005v035n11ABEH009791
Davydov B.L., Yagodkin D.I. Compact prisms for polarisation splitting of fibre laser beams // Quantum Electronics. 2005. V. 35. № 11. P. 1064–1070. https://doi.org/10.1070/QE2005v035n11ABEH009791
11. Давыдов Б.Л. Поляризационное разделение лазерных пучков на большие углы с минимальными отражательными потерями // Квантовая электроника. 2006. Т. 36. № 5. С. 473–482. https://doi.org/10.1070/QE2006v036n05ABEH013247
Davydov B.L. Polarisation splitting of laser beams by large angles with minimal reflection losses // Quantum Electronics. 2006. V. 36. № 5. P. 473–482. https://doi.org/10.1070/QE2006v036n05ABEH013247
12. Ландау Л.Д., Лифшиц Е.М. Электродинамика сплошных сред. Москва: Наука, 1982. 620 с.
Landau L.D., Lifshits E.M. Electrodynamics of continuous media [in Russian]. Moscow: Nauka, 1982. 620 p.
13. Электронный ресурс URL: www.unitedcrystals.com (Компания «United Crystals» / Каталог продукции: лазерные и нелинейно-оптические анизотропные кристаллы).
Electronic resource URL: www.unitedcrystals.com («United Crystals» Company / Product list: laser and nonlinear anisotropic crystals).
14. Электронный ресурс URL: www.lasercomponents. com (Компания «Laser Components» / Каталог продукции: лазеры и оптические комплектующие).
Electronic resource URL: www.lasercomponents.com («Laser Components » Company / Product list: lasers
and optical components).
15. Электронный ресурс URL: www.newlightphotonics. com (Компания «New Light Photonics» / Каталог продукции: лазерные и нелинейно-оптические анизотропные кристаллы).
Electronic resource URL: www.newlightphotonics. com («New Light Photonics » Company / Product list: laser and nonlinear anisotropic crystals).
16. Sato Y., Taira T. Highly accurate interferometric evaluation of thermal expansion and dn/dT of optical materials // Optical Materials Express. 2014. V. 4. № 5. P. 876–888. https://doi.org/10.1364/OME.4.000876
17. Bass M., Van Stryland E.W., Williams D.R., Wolfe W.L. Handbook of optics (Properties of materials, nonlinear optics, quantum optics). New York: McGraw–Hill, 1995.
18. Электронный ресурс URL: www.foctek.com (Компания «Foctek» / Каталог продукции: оптические комплектующие).
Electronic resource URL: www.foctek.com («Foctek» Company / Product list: optical components).