ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2025-92-02-56-66

УДК: 621.373.8

Assessing the influence of atmospheric optical inhomogeneities on the accuracy of laser beam positioning during vertical sounding

For Russian citation (Opticheskii Zhurnal):

Страхов С.Ю., Савин А.В., Сотникова Н.В., Орлов А.Е. Оценка влияния оптических неоднородностей атмосферы на точность позиционирования лазерного луча при вертикальном зондировании // Оптический журнал. 2025. Т. 92. № 2. С. 56–66. http://doi.org/10.17586/1023-5086-2025-92-02-56-66

Strakhov S.Yu., Savin A.V., Sotnikova N.V., Orlov A.E. Assessing the influence of atmospheric optical inhomogeneities on the accuracy of laser beam positioning during vertical sounding [ in Russian] // Opticheskii Zhurnal. 2025. V. 92. № 2. P. 56–66. http://doi.org/10.17586/1023-5086-2025-92-02-56-66

For citation (Journal of Optical Technology):
-
Abstract:

Subject of study. Optical inhomogeneities of the atmosphere and their influence on the parameters of laser radiation. Aim of study. Study of the influence of the altitude profile of the refractive index on the error in determining horizontal coordinates when transmitting laser radiation in the vertical direction. Method. Mathematical modeling of the atmospheric channel of propagation of laser radiation, taking into account the vertical density profile and refractive index of air. Derivation of analytical expressions relating refractive index gradients to the linear deflection of a laser beam under normal atmosphere conditions, and calculations using the resulting expressions. Main results. The work carried out a study of the influence of the altitude profile of the refractive index on the error in determining horizontal coordinates when transmitting laser radiation in the vertical direction. Analytical relations are obtained that make it possible to determine the angular and linear deviation of the beam along the vertical path, taking into account the distribution function of the refractive index over height. Nomograms of linear deviations of the point of incidence of the beam on the earth's surface from similar values for the reference beam at different heights are presented, depending on the value of the grazing angle for the normal surface atmosphere. A technique has been proposed for numerical simulation of the passage of radiation through the atmosphere with an arbitrary distribution of the refractive index. Practical significance. The relationships obtained in the work and the results of numerical modeling make it possible to perform a quantitative assessment of the linear and angular deflection of a laser beam as it propagates in the atmosphere, which is an urgent task in the design of lidar systems, remote sensing systems, group control systems for aircraft, laser communication systems and energy information exchange with using laser radiation, etc.

Keywords:

optical inhomogeneities of the atmosphere, positioning accuracy, linear beam deviation, refractive index

Acknowledgements:

this study was financially supported by the Ministry of Science and Higher Education of Russian Federation during implementation of the Project “Development and research of methods for managing groups of autonomous unmanned aerial vehicles based on advanced information support systems and interaction between individual devices in the group”, No. FZWF-2024-0002

OCIS codes: 140.3295

References:

1. Chandra R.S., Breheny S.H., D'Andrea R. Antenna array synthesis with clusters of unmanned aerial vehicles // Automatica. 2008. V. 44. P. 1976–1984.
2. Попов А.М., Кострыгин Д.Г., Матвеев С.А., Шевчик А.А. Разработка алгоритмов группового наведения беспилотных летательных аппаратов // Сборник  тезисов. XIV академические чтения по космонавтике, посвященные памяти академика С.П. Королёва и других выдающихся отечественных ученых — пионеров освоения космического пространства. Т. 4. Москва: Издательство МГТУ им. Н.Э. Баумана, 2021. С. 311–313.
 Popov A.M., Kostrygin D.G., Matveev S.A., Shevchik A.A. Development of algorithms for group guidance of unmanned aerial vehicles // Collection of abstracts. XIV academic readings on cosmonautics, dedicated to the memory of Academician S.P. Korolev and other outstanding domestic scientists — pioneers of space exploration. V. 4. Moscow: MSTU Publishing House. N.E. Bauman, 2021. P. 311–313.
3. Матвеев С.А., Страхов С.Ю., Хромихин Д.А., Ким А.А., Дукельский К.В. Организация энергоинформационного обмена между устройствами управления формой трансформируемой антенны с применением волоконно-оптических технологий // Оптический журнал. 2016. Т. 83. № 11. С. 73–78.
 Matveev S.A., Strakhov S.Yu., Khromikhin D.A., Kim A.A., Dukelsky K.V. Organization of energy information exchange between devices for controlling the shape of a transformable antenna using fiber-optic technologies // Journal of Optical Tecnology. 2016. T. 83. № 11. P. 703–707. https://doi.org/10.1364/JOT. 83.000703
4. Кочин Л.Б., Страхов С.Ю. Лазерная система передачи энергии и информации // В книге: ЛАЗЕРНО-ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ В МЕДИЦИНЕ, БИОЛОГИИ, ГЕОЭКОЛОГИИ И ТРАНСПОРТЕ – 2016. Труды XXIV Международной конференции. 2016. С. 15–16.
 Kochin L.B., Strakhov S.Yu. Laser energy and information transmission system // In the book: LASER INFORMATION TECHNOLOGIES IN MEDICINE, BIOLOGY, GEOECOLOGY AND TRANSPORT – 2016. Proceedings of the XXIV International Conference. 2016. P. 15–16.
5. Toschi I., Remondino F., Rothe R., Klimek K. Combining airborne oblique camera and lidar sensors: investigation and new perspectives // The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Volume XLII-1. 2018. ISPRS TC I Mid-term Symposium “Innovative Sensing — From Sensors to Methods and Applications”. 10–12 October 2018. Karlsruhe, Germany. https://doi.org/10.5194/isprs-archives-XLII-1-437-2018
6. Mandar Khanal, Mahamudul Hasan, Nikolaus Sterbentz, Ryen Johnson, Jesse Weatherly. Accuracy comparison of aerial lidar, mobile-terrestrial lidar, and UAV photogrammetric capture data elevations over different terrain types // Infrastructures. 2020. V. 5. P. 65. https://doi.org/10.3390/infrastructures5080065
7. Thomas Fahey, Maidul Islam, Alessandro Gardi, Roberto Sabatini. Laser beam atmospheric propagation modelling for aerospace LIDAR applications // Atmosphere. 2021. V. 12(7). P. 918. https://doi.org/10.3390/ atmos12070918
8. Kolosova V.V., Dudorova V.V., Filimonova G.A., Paninaa A.S., Vorontsov M.A. Accounting for the effect of large scale atmospheric inhomogeneities in problems of laser radiation propagation along long high altitude paths // Atmospheric and Oceanic Optics. 2014. V. 27. № 2. P. 123–129. http://doi.org/ 10.15372/ AOO20241109
9. Фалиц А.В., Кусков В.В., Банах В.А., Герасимова Л.О., Цвык Р.Ш., Шестернин А.Н. Деформация и блуждание вихревых пучков в искусственной конвективной турбулентности // Оптика атмосферы и океана. 2023. Т. 36. № 8 (415). С. 619–630. https://doi.org/10.15372/AOO20230802
 Falits A.V., Kuskov V.V., Banakh V.A., Gerasimova L.O., Tsvyk R.Sh., Shesternin A.N. Deformation and wander of vortex beams in artificial convective turbulence [in Russian] // Optika Atmosfery i Okeana. 2023. V. 36. № 08. P. 619–630. https://doi.org/10.15372/AOO20230802
10. Кусков В.В., Банах В.А., Гордеев Е.В., Шестернин А.Н. Использование обратного атмосферного рассеяния для компенсации ухода пучка от заданного направления // Оптика атмосферы и океана. 2022. Т. 35. № 10 (405). С. 836–842. https://doi.org/10.15372/AOO20221006
 Kuskov V.V., Banakh V.A., Gordeev E.V., Shesternin A.N. Compensation for beam deviation from a direction specified based on atmospheric backscattering [in Russian] // Optika Atmosfery i Okeana. 2022. V. 35. № 10. P. 836–842. https://doi.org/10.15372/AOO20221006
11. Фортес Б.В. Фазовая коррекция турбулентного размытия изображения в условиях сильных флуктуаций интенсивности // Оптика атмосферы и океана. 1999. Т. 12. № 5. С. 422–427.
 Fortes B.V. Phase correction for turbulent blurring of an image under conditions of strong intensity fluctuations // Atmospheric and oceanic optics. 1999. V. 12. № 5. P. 406–411.
12. Зуев В.Е. Распространение видимых и инфракрасных волн в атмосфере. М.: Советское радио, 1970. 496 с.
 Zuev V.E. Propagation of visible and infrared waves in the atmosphere. M.: Soviet radio, 1970. 496 p.
13. Борн М., Вольф Э. Основы оптики. М.: Наука, 1970. 856 с.
 Born M., Wolf E. Fundamentals of optics. M.: Nauka, 1970. 856 p.
14. ГОСТ 4401-81 (ИСО 2533) «Атмосфера стандартная. Параметры». Введ. 01.07.1982. Измененная ред. № 1. М: Изд. Стандартов, 2004. 181 с.
 GOST (Russian National Standard) 4401-81 (ISO 2533) "The atmosphere is standard. Parameters" [in Russian]. Introd. 01/07/82. Moscow: Standards Publ., 2004. 181 p.