DOI: 10.17586/1023-5086-2025-92-02-67-75
УДК: 531.787.5; 539.3
Statistical model of mechano-luminescence fiber optic sensor of indicator polymer coating
Full text on elibrary.ru
Паньков А.А. Статистическая модель оптоволоконного механолюминесцентного датчика индикаторного полимерного покрытия // Оптический журнал. 2025. Т. 92. № 2. С. 67–75. http://doi.org/10.17586/1023-5086-2025-92-02-67-75
Pan′kov A.A. Statistical model of mechano-luminescence fiber optic sensor of indicator polymer coating [in Russian] // Opticheskii Zhurnal. 2025. V. 92. № 2. P. 67–75. http:// doi.org/10.17586/1023-5086-2025-92-02-67-75
Subject of study. Fiber-optic indicator mechanoluminescent polymer coating for diagnosing external force effects. Aim of study. Development of mathematical models and algorithms for finding the location of single and statistical characteristics of multiple force action on the surface of the indicator polymer coating with a light guide built in the form of an Archimedes spiral, doped with randomly distributed encapsulated mechanoluminescent particles. Method. Basic principles of functioning and arrangement of mechanoluminescent fibre-optic sensor and, in general, indicator polymer coating under action of single and multiple force action are formulated. The unique properties of the Archimedes spiral were revealed, with the use of which the optical method of locating the epicenter of the force effect was developed; approach is most efficient for indicator polymer coating with large number of turns and small spiral pitch of mechanoluminescent light guide. Methods of statistical mechanics of composites, mathematical physics and Fredholm integral equations of the 1st kind were used. Main results. Disclosed is a simple algorithm for locating the epicentre of a single force effect based on the measurement result of time intervals between light pulses at the output of the light guide. An algorithm has been developed for finding the spectrum of multiple forces distributed over the surface of the indicator coating from successive solutions of two integral Fredholm equations of the 1st kind based on the measurement result of the integral informative fluorescent light flux at the output of the light guide for different values of the control light flux entering the light guide. Practical significance. Invention proposes solution of actual problem of indication and quantitative evaluation of external force effects acting on long aerodynamic surface in the form of hail impacts, concrete crumb from under front wheel at take-off from runway, space debris particles for the purpose of monitoring preservation of strength and aerodynamic characteristics of aerospace engineering elements. The use of light flux as a control effect provides significant advantages over similar indicator coatings using electrical control signals.
indicator polymer coating, fibre-optic sensor, mechanoluminescence, optical reflectometry, numerical modelling
Acknowledgements:the study was funded by Perm krai and the Russian Science Foundation (Project № 24-21-20026)
OCIS codes: 060.2370, 120.5475
References:1. Razdobreev I., Bigot L., Pureur V. et al. High efficiency Bi-doped fiber laser // Proc. LPHYS’06. Lausanne, Switzerland. 24–28 July 2006.
2. Xu C.N., Watanabe T., Akiyama M., Zheng X.G. Artificial skin to sense mechanical stress by visible light emission // Applied Physics Letters. 1999. V. 74. P. 1236–1238. https://doi.org/10.1063/1.123510
3. Xu C.N., Watanabe T., Akiyama M., Zheng X.G. Direct view of stress distribution in solid by mechanoluminescence // Applied Physics Letters. 1999. V. 74. P. 2414–2416. https://doi.org/10.1063/1.123865
4. Zhang J.C., Wang X.S., Marriott G., Xu C.N. Trapcontrolled mechanoluminescent materials // Progress in Materials Science. 2019. V. 103. P. 678–742. https://doi.org/10.1016/j.pmatsci.2019.02.001
5. Zhang J.C., Xu C.N., Kamimura S. et al. An intense elastico-mechanoluminescence material CaZnOS: Mn2þ for sensing and imaging multiple mechanical stresses // Opt. Express. 2013. V. 21. P. 12976–12986. https://doi.org/10.1364/OE.21.012976
6. Truong V.G., Bigot L., Lerouge A., Douay M. Study of thermal stability and luminescence quenching properties of bismuth-doped silicate glasses for fiber laser applications // Appl. Phys. Lett. 2008. V. 92. № 4. P. 041908. https://doi.org/10.1063/1.2828035
7. Matrosova A.S., Ananyev V.A., Pchelkin G.A. и др. Organic phosphor based fiber-optic sensor for detection of UV radiation // Journal of Physics: Conference Series. 2021. V. 2086. № 1. https://doi.org/10.1088/1742-6596/2086/1/012155
8. Матросова А.С., Булыга Д.В., Садовничий Р.В. и др. Люминесцентный волоконно-оптический датчик температуры на основе нанокристаллов CE:YAG и многомодового волоконного световода // ФотонЭкспресс. 2021. Т. 174. № 6. С. 282–283. https://doi:10.24412/2308-6920-2021-6-282-283
Matrosova A.S., Bulyga D.V., Sadovnichij R.V. et al. Fluorescent fiber optic temperature sensor based on CE:YAG nanocrystals and multimode fiber optic [in Russian] // Foton-Ekspress. 2021. T. 174. № 6. P. 282–283. https://doi: 10.24412/2308-6920-2021-6-282-283
9. Evstropiev S.K., Demidov V., Bulyga D.V. et al. YAG : R3+(R = Ce, Dy, Yb) nanophosphor-based luminescent fibre-optic sensors for temperature measurements in the range 20–500 °C // Quantum Electronics. 2022. V. 52. № 1. С. 94–99. https://doi.org/10.1070/QEL17971
10. Du Y.Y., Jiang Y., Sun T.Y. et al. Mechanically excited multicolor luminescence in lanthanide ions // Advanced Materials. 2019. V. 31. P. 1807062. https://doi.org/10.1002/adma.201807062
11. Pan C., Zhang J.C., Zhang M. et al. Intrinsic oxygen vacancies mediated multi-mechano-responsive piezoluminescence in undoped zinc calcium oxysulfide // Applied Physics Letters. 2017. V. 110. P. 233904. https://doi.org/10.1063/1.4985012
12. Wang X.S., Xu C.N., Yamada H. et al. Electro-mechano-optical conversions in Pr3–doped BaTiO3-CaTiO3 ceramics // Advanced Materials. 2005. V. 17. P. 1254–1258. https://doi.org/10.1002/adma.200401406
13. Hu Y., Wei Z., Wu B. et al. Photoluminescence of ZnS: Mn quantum dot by hydrothermal method // AIP Advances. 2018. V. 8. P. 015014. https://doi.org/10.1063/1.5010833
14. Wang X., Zhang H., Yu R. et al. Dynamic pressure mapping of personalized handwriting by a flexible sensor matrix based on the mechanoluminescence process // Advanced Materials. 2015. V. 27. № 14. P. 2324–2331. https://doi: 10.1002/adma.201405826
15. Wang X., He J., Qiu Z. et al. CaS:Eu2+@CaZnOS:Mn2+: A dual-UV/green-excited and dual-red-emitting spectral conversion with all-weather resistance // Ceramics International. 2020. V. 46. № 7. P. 9734–9740. https://doi.org/10.1016/j.ceramint.2019.12.242
16. Wang C., Peng D., Pan C. Mechanoluminescence materials for advanced artificial skin // Science Bulletin. 2020. V. 65. P. 1147–1149. https://doi.org/10.1016/j.scib.2020.03.034
17. Петерс М.П.Й., Ван Дремел Г.В.Г., Шмидт П.Й. и др. Покрытая люминесцентная частица, люминесцентный преобразующий элемент, источник света, осветительное устройство и способ изготовления покрытой люминесцентной частицы // Патент РФ № 2674135. Бюл. 2018 № 34.
Peters M.P.J., Van Dremel G.V.G., Shmidt P.J. et al. Coated luminescent particle, luminescent converting element, light source, lighting device and method of coated luminescent particle manufacturing // RF Patent № RU2674135. Bull. 2018 № 34.
18. Паньков А.А. Волоконно-оптический датчик механических напряжений // Патент РФ № 2799986. Бюл. 2023 № 20.
Pan’kov A.A. Fiber optic stress sensor // RF Patent № RU2799986. Bull. 2023 № 20.
19. Паньков А.А. Информативные световые импульсы индикаторного полимерного оптоволоконного PELпокрытия при вдавливании жестких шаровых частиц // Оптический журнал. 2021. Т. 88. № 8. С. 99–106. http://doi.org/10.17586/1023-5086-2021-88-08-99-106
Pan’kov A.A. Informative light pulses of indicating polymer fiber-optic piezoelectroluminescent coatings upon indentation of rigid globular particles // Journal of Optical Technology. 2021. V. 88. № 8. P. 477–482. https://doi.org/10.1364/JOT.88.000477
20. Волков С.Д., Ставров В.П. Статистическая механика композитных материалов. Мн.: Изд–во Белорус. гос. университета, 1978. 208 с.
Volkov S.D., Stavrov V.P. Statistical mechanics of composite materials [in Russian]. Minsk: Belorus. gos. universitet Publ., 1978. 208 p.
21. Победря Б.Е. Механика композиционных материалов. М.: Изд–во моск. университета, 1984. 336 c. Pobedrya B.E. Mechanics of composite materials [in Russian]. Moscow: Moscow State University Publ., 1984. 336 p.
22. Паньков А.А. Пьезокомпозиты и датчики: монография в 3-х частях / Часть 1. Статистическая механика пьезокомпозитов. Пермь: Изд-во пермского национального исследовательского политехнического университета, 2022. 234 с.
Pan’kov A.A. Piezocomposites and sensors: monograph in 3 parts / Part 1. Statistical mechanics of piezocomposites [in Russian]. Perm: Perm National Research Polytechnic University Publ., 2022. 234 p.