ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2025-92-02-96-105

УДК: 771.351.76, 535.317.68, 535-15

Modeling and investigation of the combination of passive athermalization and achromatization in a two-component bifocal zoom objective in the infrared range of the spectrum

For Russian citation (Opticheskii Zhurnal):

Левин И.А., Грейсух Г.И. Моделирование и исследование совмещения пассивной атермализации и ахроматизации у двухкомпонентного бифокального вариообъектива в инфракрасном диапазоне спектра // Оптический журнал. 2025. Т. 92. № 2. С. 96–105. http://doi.org/10.17586/1023-5086-2025-92-02-96-105

 

Levin I.A., Greisukh G.I. Modeling and investigation of the combination of passive athermalization and achromatization in a two-component bifocal zoom objective in the infrared range of the spectrum [in Russian] // Opticheskii Zhurnal. 2025. V. 92. № 2. P. 96–105. http://doi.org/10.17586/1023-5086-2025-92-02-96-105

For citation (Journal of Optical Technology):
-
Abstract:

Subject of the study. A model of a two-component three-lens bifocal zoom objective that allows combining achromatization and athermalization by a passive method. Purpose of the study. To present the results of the analysis of the design parameters and optimal combinations of optical materials of the two-component bifocal zoom objective model, ensuring the achievement of achromatization and athermalization, performed using the developed mathematical apparatus and the methodology based on it. The research method. Theoretical analysis and mathematical modeling using geometric optics equations. The main results. A mathematical apparatus and the methodology based on it have been developed for the model of a two-component bifocal zoom objective, which makes it possible to obtain the optimal combination of optical materials and structural material in the air gap between the components, as well as the values of the optical power of the lenses and the air gaps between them, providing chromatic correction while simultaneously achieving athermalization by a passive optical or mechanical method. Using the developed methodology, it is shown that the nomenclature of optical materials transparent in a wide range of the infrared spectrum makes it possible to design high-power bifocal zoom objective-achromats, athermalized by the passive method. The possibility of changing the thermal refocusing value over a wide range without significantly affecting the value of the thermal refocusing difference corresponding to two focal length values of a two-component bifocal zoom objective is demonstrated. Practical significance. The presented methodology makes it possible to obtain the design parameters of the initial optical lay out at the initial stage of designing a bifocal zoom objective-achromate athermalized by the passive method.

Keywords:

infrared radiation, zoom objective, passive athermalization

Acknowledgements:

the investigation was carried out as part of the implementation of the state task of the Ministry of Science and Higher Education of the Russian Federation № FSGS-2024-0005

OCIS codes: 080.2740, 080.3630, 110.3080, 160.4670

References:

1. Jamieson T.H. Athermalization of optical instruments from the optomechanical viewpoint // Proceedings of SPIE. 1992. V. 10265. P. 131–159. http://doi.org/10.1117/12.61105
2. Ford E.H. Active temperature compensation of an infrared zoom objective // Proceedings of SPIE. 1997. V. 3129. P. 138–143. http://doi.org/10.1117/12.279085
3. Медведев А.В., Гринкевич А.В., Князева С.Н. Атермализация объективов прицельно-наблюдательных комплексов как средство обеспечения жизнедеятельности объектов БТВТ // Фотоника. 2016. Т. 56. № 2. С. 94–109.
 Medvedev A.V., Grinkevich A.V., Knyazeva S.N. Athermalization of objectives of sighting and observation complexes as the means of functioning support of the facilities of Armament of Armored Force Vehicles (AAFV) // Photonics Russia. 2016. V. 56. Iss. 2. P. 94–109.
4. Грейсух Г.И., Левин И.А., Казин С.В. Пассивная механическая атермализация тепловизионного вариообъектива, сопряжённого с неохлаждаемым приёмником излучения // Оптический журнал. 2023. Т. 90. № 9. С. 14–27. http://doi.org/10.17586/1023-5086-2023-90-09-14-27
 Greisukh, G.I., Levin I.A., Kazin S.V. Passive mechanical athermalization of thermal imaging zoom objectivees coupled to an uncooled infrared matrix detector // Journal of Optical Technology. 2023. V. 90. № 9. P. 498–506. http://doi.org/10.1364/JOT.90. 000498
5. Romanova G.E., Pyś G. Research of aberration properties and passive athermalization of optical systems for infrared region // Proceedings of SPIE. 2015. V. 9626. 96260H (8 p). http:// doi.org/10.1117/12.2191119

6. Тягур В.М., Кучеренко О.К., Муравьёв А.В. Пассивная оптическая атермализация инфракрасного трехлинзового ахромата // Оптический журнал. 2014. Т. 81. № 4. С. 42–47.
 Tyagur V.M., Kucherenko O.K., Murav’ev A.V. Passive optical athermalization of an IR three-lens achromat // Journal of Optical Technology. 2014. V. 81. № 4. P. 199–203. http://doi.org/10.1364/JOT.81.000199
7. Чуриловский В.Н. Теория оптических приборов. Л.: «Машиностроение», 1966. 564 с.
 Churilovsky V.N. The theory of optical devices [in Russian] Moscow: Mashinostroenie, 1966. 564 p.
8. Stephens R.E. Selection of glasses for three-color achromats // Journal of the Optical Society of America. 1959. V. 9. Iss. 4. P. 398–401. http://doi.org/10.1364/ JOSA.49.000398
9. Herzberger M., McClure N.R. The design of superachromatic lenses // Applied Optics. 1963. V. 2. Issue 6. P. 553–560. http://doi.org/10.1364/AO.2.000553
10. Stone T., George N. Hybrid diffractive-refractive lenses and achromats // Applied Optics. 1988. V. 27. Iss. 14. P. 2960–2971. http://doi.org/10.1364/AO.27.002960
11. Tamagawa Ya, Wakabayashi S., Tajime T., Hashimoto Ts. Multilens system design with an athermal chart // Applied Optics. 1994. V. 33. Iss. 34. P. 8009–8013. http://doi.org/10.1364/AO.33.008009
12. Tamagawa Ya, Tajime T. Dual-band optical systems with a projective athermal chart: design // Applied Optics. 1997. V. 36. Iss. 1. P. 297–301. http://doi.org/10.1364/AO.36.000297
13. Иванов С.Е., Романова Г.Э. Метод выбора оптических материалов для создания апохроматических атермализованных оптических систем // Оптический журнал. 2016. Т. 83. № 12. С. 25–30.
 Ivanov S.E., Romanova G.E. Optical material selection method for an apochromatic athermalized optical system // Journal of Optical Technology. 2016. V. 83. № 12. P. 729–733. http://doi.org/10.1364/JOT.83.000729
14. Иванов С.Е., Романова Г.Э. Расчёт термостабилизированных ахроматических ИК объективов с использованием графоаналитического метода выбора оптических материалов // Известия высших учебных заведений. Приборостроение. 2017. Т. 60. № 3. С. 256–262. http://doi.org/10.17586/0021-3454-2017-60-3-256-262
 Ivanov S.E., Romanova G.E. Сalculation of heat-stabilized achromatic IR lenses using a graphic method for choice of optical materials // Journal of Instrument Engineering. 2017. V. 60. № 3. P. 256–262. http://doi.org/10.17586/0021-3454-2017-60-3-256-262
15. Kim Y.-Ju., Kim Y.-S., Park S.-Ch. Simple graphical selection of optical materials for an athermal and achromatic design using equivalent abbe number and thermal glass constant // Journal of the Optical Society of Korea. 2015. V. 19. Iss. 2. P. 182–187. http://doi.org/10.3807/JOSK.2015.19.2.182
16. Zhu Y., Cheng J., Liu Y. Multiple lenses athermalization and achromatization by the quantitative replacement method of combined glasses on athermal visible glass map // Optics Express. 2021. V. 29. Iss. 21. P. 34707–34722. http://doi.org/10.1364/OE.439318
17. Beadie G., Stover E., Gibson D. Temperature-dependent dispersion fitting for a recent infrared glass catalog // Proceedings of SPIE. 2019. V. 10998. P. 1099804 (6 p). http://doi.org/10.1117/12.2518494
18. Bayya S., Gibson D., Nuygen V., Sanghera J., Kotov M., Drake G., Deegan J., Lindberg G. Design and fabrication of multispectral optics using expanded glass map // Proceedings of SPIE. 2015. V. 9451. P. 94511N (7 p). http://doi.org/10.1117/12.2177289
19. Gibson D., Bayya S., Nguyen V., Myers J., Fleet E., Sanghera J., Vizgaitis J., Deegan J., Beadie G. Diffusion-based gradient index optics for infrared imaging // Optical Engineering. 2020. V. 59. Iss. 11. P. 112604 (22 p). http://doi.org/10.1117/1.OE.59.11.112604
20. Грейсух Г.И., Левин И.А., Ежов Е.Г. Сверхсветосильный тепловизионный триплет с градиентной линзой: этапы моделирования композитного градиентного материала и потенциальные возможности оптической схемы // Оптический журнал. 2024. Т. 91. № 3. С. 5–13. http://doi.org/10.17586/1023-5086-2024-91-03-5-13
 Greisukh G.I., Levin I.A., Ezhov E.G. Ultra-highaperture dual-range gradient index-diffractive infrared objective // Journal of Optical Technology. 2024. V. 91. № 3. P. 137–141 https://doi.org/10.1364/JOT.91.000137
21. Laikin M. Lens design (4-th edition). New York: CRC Press, 2006. 512 p.
22. Грейсух Г.И., Левин И.А., Казин С.В. Афокальный корректор для расширения рабочих спектрального и температурного диапазонов инфракрасной системы: методика расчёта и достигнутые характеристики // Оптический журнал. 2024. Т. 91. № 1. С. 66–79. http://doi.org/10.17586/1023-5086-2024-91-01-66-79
 Greisukh G.I., Levin I.A., Kazin S.V. Afocal corrector for expanding the operating spectral and temperature ranges of an infrared system: Design methodology and achieved optical performance // Journal of Optical Technology. 2024. V. 91. № 1. P. 40–47. http://doi.org/10.1364/JOT.91.000040