ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2025-92-03-104-113

УДК: 541(64+14+183)

Liquid crystal polymer composites with photo- and mechanically controlled optical properties

For Russian citation (Opticheskii Zhurnal):

Баленко Н.В., Павлов С.Н., Шибаев В.П. Жидкокристаллические полимерные композиты с фото- и механически-управляемыми оптическими свойствами // Оптический журнал. 2025. Т. 92. № 3. С. 104–113. http://doi.org/10.17586/1023-5086-2025-92-03-104-113

 

Balenko N.V., Pavlov S.N., Shibaev V.P. Liquid crystal polymer composites with photo- and mechanically controlled optical properties [in Russian] // Opticheskii Zhurnal. 2025. V. 92. № 3. P. 104–113. http://doi.org/10.17586/1023-5086-2025-92-03-104-113

For citation (Journal of Optical Technology):
-
Abstract:

Subject of study. Elastic polymer composites based on glycerol-plasticized polyvinyl alcohol with dispersed droplets of photosensitive cholesteric liquid crystals. Aim of study. Obtaining new composite materials with photo and mechanically-controlled optical properties, establishing the effect of ultraviolet irradiation and mechanical deformation on the selective reflection spectra of composite films. Method. The composite films were irradiated with an ultraviolet laser and deformed at a constant stretching rate, continuously recording the spectra of selective light reflection. The influence of irradiation time and degree of films deformation on the color of the films was studied. A comparison of the mechano-optical behavior of the films before and after irradiation was performed. Main results. Irradiation of the composites causes a shift of the peak — selective reflection of light to the short-wave spectral region by 27 nm. Deformation of the films of irradiated and non-irradiated composites up to 100% stretching leads to a shift of the peak of selective reflection to the 60 nm short wave spectral region; the process is reversible and after fixing the sample the peak returns to its original position. Practical significance. The obtained results can become the basis for the development of a new generation of smart materials with several types of sensitivity. These materials can find application in the field of recording and storage of information as well as in deformation sensors, protective devices with a latent image and other high-tech application.

Keywords:

selective light reflection, cholesteric liquid crystal, polymer composite, mechanicaloptical properties, photosensitivity

Acknowledgements:

t the work was carried out within the framework of the project: “Modern Problems of Chemistry and Physical Chemistry of Macromolecular Compounds” (state budget, № АААА-А21-121011990022-4).

OCIS codes: 160.3710, 160.5470, 140.0140, 310.6860

References:

1. Shen W., Zhang H., Miao Z., et al. Recent progress in functional dye-doped liquid crystal devices // Adv. Funct. Mater. 2023. V. 33. № 6. P. 1–38. https://doi.org/10.1002/adfm.202210664
2. Шибаев В., Бобровский А. Жидкокристаллические полимеры: тенденции развития и фотоуправляемые материалы // Успехи химии. 2017. Т. 86. № 11. С. 1024–1072. https://doi.org/10.1070/RCR4747?locatt=label:RUSSIAN.
 Shibaev V., Bobrovsky A. Liquid crystalline polymers: Development trends and photocontrollable materials // Russ. Chem. Rev. 2017. V. 86. № 11. P. 1024–1072. https://doi.org/10.1070/RCR4747
3. Balenko N., Shibaev V., Bobrovsky A. Mechanosensitive polymer-dispersed cholesteric liquid crystal composites based on various polymer matrices // Polymer. 2023. V. 281. P. 126119. https://doi.org/10.1016/ j.polymer.2023.126119
4. Беляев В.В., Чилая Г.С. Жидкие кристаллы в начале XXI века: монография. М.: ИИУ МГОУ, 2017. 144 с. ISBN 978-5-7017-2785-2.
 Belyaev V.V., Chilaya G.S. Liquid crystals at the beginning of the XXI century [in Russian]. Moscow: Editorial Office of Moscow Region State University, 2017. 142 p. ISBN 978-5-7017-2785-2.
5. Шибаев В. Жидкокристаллические полимерные системы — от прошлого к настоящему // Высокомолекулярные соединения. Сер. А. 2014. Т. 56. № 6. С. 593–630. https://doi.org/10.7868/S2308112014060091
 Shibaev V. Liquid crystalline polymer systems: From the past to the present // Polymer Sci. Ser. A. 2014. V. 56. № 6. P. 593–630. https://doi.org/10.1134/S0965545X14060091
6. Kwon C., Nam S., Han S. Optical characteristics of stretchable chiral liquid crystal elastomer under multiaxial stretching // Adv. Funct. Mater. 2023. V. 33. № 46. P. 1–12. https://doi.org/10.1002/adfm.202304506
7. Fellert M., Hein R., Ryabchun A., et al. A multiresponsive ferrocene-based chiral overcrowded alkene twisting liquid crystals // Angew. Chem. Int. Ed. 2024. P. e202413047. https://doi.org/10.1002/anie.202413047
8. Ryabchun A., Bobrovsky A. Cholesteric liquid crystal materials for tunable diffractive optics // Adv. Opt. Mater. 2018. V. 6. № 15. P. 1800335. https://doi.org/10.1002/adom.201800335

9. Электронный ресурс URL: https://www.tech-journals.ru/journals/tech/12359-poisk-39-sentyabr-2024. html (Газета научного сообщества Поиск. № 39. 2024).
 Online resource URL: https://www.tech-journals.ru/ journals/tech/12359-poisk-39-sentyabr-2024.html (Newspaper of the Scientific Community Search. № 39. 2024).
10. Bisoyi H.K., Li Q. Liquid crystals: Versatile selforganized smart soft materials // Chem. Rev. 2022. V. 122. № 5. P. 4887–4926. https://doi.org/10.1021/acs. chemrev.1c00761
11. Schenning A., Crawford G.P., Broer D.J., et al. Liquid crystal sensors (1st ed.). Boca Raton: CRC Press, 2017. 178 р. https://doi.org/10.1201/ 9781315120539
12. Clough J.M., Weder C., Schrettl S. Mechanochromism in structurally colored polymeric materials // Macromol. Rapid Commun. 2021. V. 42. № 1. P. 1–30. https:// doi.org/10.1002/marc.202000528
13. Shibaev P.V., Uhrlass R., Woodward S., et al. Mechanism of colour changes in stretchable cholesteric films // Liq. Cryst. 2010. V. 37. № 5. P. 587–592. https://doi.org/10.1080/02678291003710474.