ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2025-92-03-32-39

УДК: 778.38, 535.421, 535.417

Wavefront diffraction on a pattern formed by structured light

For Russian citation (Opticheskii Zhurnal):

Шойдин С.А., Пазоев А.Л. Дифракция волнового фронта на паттерне, сформированном структурированным светом // Оптический журнал. 2025. Т. 92. № 3. С. 32–39. http://doi.org/10.17586/1023-5086-2025-92-03-32-39

 

Shoydin S.A., Pazoev A.L. Wavefront diffraction on a pattern formed by structured light [in Russian] // Opticheskii Zhurnal. 2025. V. 92. № 3. P. 32–39. http://doi.org/10.17586/1023-5086-2025-92-03-32-39

For citation (Journal of Optical Technology):
-
Abstract:

Subject of the study. Search for ways to effectively compress holographic information, which is necessary to eliminate the inherent contradiction between the huge volumes of information in holograms and the limited spectrum of the available radio range. Purpose of the work. Development of an effective method of information compression that allows transmitting over a standard television channel all the information necessary for the synthesis of a hologram and subsequent restoration at the receiving end of the communication channel of a 3D image with high spatial resolution, television frame rate and continuous parallax. Method. By moving from traditional entropy coding to the use of the holographic diffraction structure features, the authors previously managed to achieve compression up to the required five to six orders of magnitude, representing the 3D signal in the main modalities — a 2D height map and a 2D surface texture. This paper demonstrates a method for compressing height map information by another two orders of magnitude. Main Results. It is shown that the information about the height map of the television frame can be compressed by two more orders of magnitude. Practical significance. The obtained results show the possibility of transmitting all the necessary information over a traditional television channel, which fits in a standard television signal band, providing the transmission of the height map with additional two bytes for each line of the 3D image texture frame. This is equivalent to a slight complication of the service information at the end of each line or the introduction of an additional column in each television frame.

Keywords:

holography, interference, holographic interference fringes, structured light, holographic television, 3D augmented reality

OCIS codes: 090.1760

References:

1. Lucente M. Computational holographic bandwidth compression // IBM Systems J. 1996. V. 35. № 3.4. P. 349–365. https://doi.org/10.1147/sj.353.0349
2. Титарь В.П., Богданова Т.В. Проблемы создания голографической телевизионной системы // Радиоэлектроника и информатика. 1999. Т. 2. № 7. С. 38–42.
 Titar V.P., Bogdanova T.V. Issues in creating holographic television system [in Russian] // Radioelectron. Inform. 1999. V. 2. № 7. P. 38–42.
3. Blinder D., Ahar A., Bettens S., et al. Signal processing challenges for digital holographic video display systems // Signal Proc.: Image Commun. 2019. V. 70. P. 114–130. https://doi.org/10.1016/j.image.2018.09.014
4. Комар В.Г. О принципиальной схеме кинопроекции цветных объемных голографических изображений // Труды НИКФИ. 1976. Т. 82. С. 5–32.
 Komar V.G. About the principal scheme of film projection of colour volumetric holographic images [in Russian] // Proc. NIKFI. 1976. V. 82. P. 5–32.
5. Шойдин С.А. Синтез голограмм на приемном конце канала связи с объектом голографирования // Компьютерная оптика. 2020. Т. 44. № 4. С. 547–551. https://doi.org/10.18287/2412-6179-CO-694
 Shoydin S.A. Synthesis of holograms received by a communication channel [in Russian] // Computer Opt. 2020. V. 44. № 4. P. 547–551. https://doi.org/10.18287/ 2412-6179-CO-694
6. Шойдин С.А., Пазоев А.Л. Способ дистанционного формирования голографической записи // Автометрия. 2021. Т. 57. № 1. С. 92–102. https://doi.org/ 10.15372/AUT20210110
 Shoydin S.A., Pazoev A.L. Remote formation of holographic record // Optoelectronics, Instrumentation and Data Proc. 2021. V. 57. № 1. P. 80–88. https://doi. org/10.3103/S8756699021010118
7. Shoydin S.A., Pazoev A.L. Transmission of 3D holographic information via conventional communication channels and the possibility of multiplexing in the implementation of 3D hyperspectral images // Photonics. 2021. V. 8. № 10. P. 448–471. https://doi.org/10.3390/photonics8100448.381
8. Lucente M. The first 20 years of holographic video — and the next 20 // SMPTE 2nd Annual Intern. Conf. Stereoscopic 3D for Media and Entertainment. New York, NY, USA. June, 2011. Access mode: https:// www.researchgate.net/publication/268387890_The_First_20_Years_of_Holographic_Video_-_and_the_Next_20, free. In English (accessed 24/10/2024).
9. Muhamad R.K., Birnbaum T., Gilles A., et al. JPEG Pleno holography: Scope and technology validation procedures // Appl. Opt. 2021. V. 60. № 3. P. 641–651. https://doi.org/10.1364/AO.404305
10. Денисюк Ю.Н. Достаточно ли известны фундаментальные принципы голографии для создания новых типов объемного кинематографа и искусственного интеллекта? // ЖТФ. 1991. Т. 61. № 8. С. 149–161. https://doi.org/10.15372/AUT20210110
 Denisyuk Yu.N. Are the fundamental principles of holography well-known enough for creating new types of three-dimensional films and artificial intelligence? [in Russian] // Tech. Phys. 1991. V. 61. № 8. P. 149–161. https://doi.org/10.15372/AUT20210110
11. Шойдин С.А., Пазоев А.Л. Передача 3D голографической информации по радиоканалу // Науч.-техн. вест. инф. технол., механики и оптики. 2023. Т. 23. № 1. P. 21–27. https://doi.org/10.17586/2226-1494-2023-23-1-21-27
 Shoydin S.A., Pazoev A.L. Transmission of 3D holographic information over a radio channel by a method close to SSB [in Russian] // Sci. Tech. J. Inf. Technol. Mech. Opt. 2023. V. 23. № 1. P. 21–27. https://doi. org/10.17586/2226-1494-2023-23-1-21-27
12. Shoydin S.A., Odinokov S.B., Pazoev A.L., et al. Recording a hologram transmitted over a communication channel on one sideband // Appl. Opt. 2021. V. 11. № 23. P. 11468. https://doi.org/10.3390/app112311468
13. Шойдин С.А., Пазоев А.Л., Смык А.Ф. и др. Синтезированные на приемном конце канала связи голограммы 3D объекта в технологии Dot Matrix // Компьютерная оптика. 2022. Т. 46. № 2.2. С. 204–213. https://doi.org/10.18287/2412-6179-CO-1037
 Shoydin S.A., Pazoev A.L., Smyk A.F., et al. Holograms of a 3D object synthesized at the receiving end of the communication channel in Dot Matrix technology [in Russian] // Computer Opt. 2022. V. 46. № 2.2. P. 204–213. https://doi.org/10.18287/2412-6179-CO-1037