DOI: 10.17586/1023-5086-2025-92-03-48-57
УДК: 535.8
Shack–Hartmann sensor as a universal meter of optical wave fluctuations
Full text on elibrary.ru
Лукин В.П., Больбасова Л.А., Соин Е.Л. Датчик Шэка–Гартмана как универсальный измеритель флуктуаций оптических волн // Оптический журнал. 2025. Т. 92. № 3. С. 48–57. http://doi.org/10.17586/1023-5086-2025-92-03-48-57
Lukin V.P., Bolbasova L.A., Soin E.L. Shack–Hartmann sensor as a universal meter of optical wave fluctuations [in Russian] // Opticheskii Zhurnal. 2025. V. 92. № 3. P. 48–57. http:// doi.org/10.17586/1023-5086-2025-92-03-48-57
Subject of research. New capabilities of the wavefront sensor of the Shack–Hartmann type are analyzed. Purpose of the work. Comparison of experimental results of the operation of Shack–Hartmann wavefront sensors for various atmospheric optics problems: a classic wavefront sensor on horizontal atmospheric paths when working with laser radiation, a correlation wavefront sensor on the Large Solar Vacuum Telescope when forming an image of an extended object through atmospheric turbulence, and modified wavefront sensors for analyzing the state of atmospheric turbulence. Method. Various applications of Shack–Hartmann wavefront sensors are described and measu rement results are presented. Main results. The data on the operation of the Shack–Hartmann wavefront sensor on various atmospheric paths are presented, using several microlens rasters of variable dimensions, which made it possible to work in changing conditions of the level of atmospheric turbulence. Practical significance. The results obtained in the work can be used for developments of adaptive optics systems and for studying the atmospheric turbulence on the propagation path of optical radiation.
phase, optical waves, measurements, Shack–Hartmann sensor, turbulence
Acknowledgements:Lukin V.P., Bolbasova L.A., Soin E.L. Shack–Hartmann sensor as a universal meter of optical wave fluctuations [in Russian] // Opticheskii Zhurnal. 2025. V. 92. № 3. P. 48–57. http:// doi.org/10.17586/1023-5086-2025-92-03-48-57
OCIS codes: 010.1080, 010.7350, 110.1080
References:1. Platt B.C., Shack R. History and principles of Shack–Hartmann wavefront sensing // J. Refract. Surg. 2001. V. 17. P. 573–577. https://doi.org/10.3928/1081-597X-20010901-13
2. Voitsekhovich V., Sanchez L., Orlov V., et al. Efficiency of the Hartmann test; with different subpupil forms for the measurement of turbulence-induced phase distortions // Appl. Opt. 2001. V. 40. № 9. P. 1299. https:// doi.org/10.1364/AO.40.001299
3. Seifert L., Liesener J., and Tiziani H.J. The adaptive Shack–Hartmann sensor // Opt. Commun. 2003. V. 216. P. 313. https://doi.org/10.1016/S0030-4018(02)02351-9
4. De Lima Montero D.W., Vilaca A., Vdovin G. et al. Integrated Hartmann–Shack wavefront sensor // 3rd Intern. Workshop on Adaptive Optics for Industry and Medicine. Albuquerque, USA. July 23–26, 2002. P. 179–180.
5. Ribak E.N. and Ebstein S.M. A fast modal wave-front sensor // Opt. Exp. 2001. V. 9. № 3. P. 152. https://doi.org/10.1364/OE.9.000152
6. Mansell J.D., Byer R.L. Sub-lens spatial resolution Shack–Hartmann wave-front sensing // 2nd Intern. Workshop on Adaptive Optics for Industry and Medicine. Durham, England. July 12–16, 1999. P. 227–231.
7. Huang J., Yao L., Wu S., et al. Wavefront reconstruction of Shack–Hartmann with under-sampling of subapertures // Photonics. 2023. V. 10. P. 65. https://doi.org/10.3390/photonics10010065
8. Noll R.J. Zernike polynomials and atmospheric turbulence // JOSA. 1976. V. 66. № 3. P. 207–211. https:// doi.org/10.1364/JOSA.66.000207
9. Brennan T.J. and Mann D.C. Estimation of optical turbulence characteristics from Shack–Hartmann wavefront sensor measurements // Proc. SPIE. 2010. V. 7816. P. 781602. https://doi.org/10.1117/12.862808
10. Sarazin M., Roddier F. The ESO differential image motion monitor // Astron. and Astrophys. 1990. V. 227. P. 294–300.
11. Антошкин Л.В., Ботыгина Н.Н., Емалеев О.Н. и др. Дифференциальный измеритель параметров атмосферной турбулентности // Оптика атмосферы и океана. 1998. Т. 11. № 11. С. 1219–1223.
Antoshkin L.V., Botygina N.N., Emaleev O.N., et al. Differential meter of atmospheric turbulence parameters [in Russian] // Atmospheric and Oceanic Optics. 1998. V. 11. № 11. P. 1219–1223.
12. Борзилов А.Г., Коняев П.А., Лукин В.П. и др. Измерения параметров атмосферы на протяженной трассе. II. Оптические измерения уровня турбулентности // Оптика атмосферы и океана. 2023. Т. 36. № 7. С. 557–562. https://doi.org/10.15372/AOO20230704
Borzilov A.G., Konyaev P.A., Lukin V.P., et al. Measurements of atmospheric parameters on an extended path. II. Optical measurements of the turbulence level [in Russian] // Atmospheric and Oceanic Optics. 2023. V. 36. № 7. P. 557–562. https://doi.org/10.15372/AOO20230704
13. Лукин В.П., Ботыгина Н.Н., Антошкин Л.В. и др. Многокаскадная система коррекции изображения для Большого солнечного вакуумного телескопа // Оптика атмосферы и океана. 2019. Т. 32. № 05. С. 404–413. https://doi.org/10.15372/AOO20190511.
Lukin V.P., Botygina N.N., Antoshkin L.V., et al. Multi-cascade image correction system for the Large Solar Vacuum Telescope [in Russian] // Atmospheric and Oceanic Optics. 2019. V. 32. № 05. P. 597. https://doi.org/10.1134/S1024856019050117
14. Love G.D., Oag T.J.D., Kirby A.K. Common path interferometric wave-front sensor for extreme adaptive optics // Opt. Exp. 2005. V. 13. № 9. P. 3491. https://doi.org/10.1364/OPEX.13.003491
15. Ragazzoni R. Pupil plane wavefront sensing with; an oscillating prism // J. Modern Opt. 1996. V. 43. P. 289–293. https://doi.org/10.1080/0950034960823274
16. Roddier F. Curvature sensing and compensation in adaptive optics // Appl. Opt. 1988. V. 27. P. 1223. https://doi.org/10.1364/AO.27.001223
17. Андреева М.С., Ирошников Н.Г., Корябин А.В. и др. Использование датчика волнового фронта для оценки параметров атмосферной турбулентности // Автометрия. 2012. Т. 48. № 2. С. 103–111. https://doi.org/10.3103/S8756699012020136
Andreeva M.S., Iroshnikov N.G., Koryabin A.B., et al. Usage of wavefront sensor for estimation of atmospheric turbulence parameters // Optoelectronics, Instrumentation and Data Proc. 2012. V. 48. № 2. P. 197. https://doi.org/10.3103/S8756699012020136
18. Больбасова Л.А., Грицута А.Н., Лавринов В.В. и др. Измеритель параметров турбулентности атмосферы на основе датчика волнового фронта Шэка–Гартмана // Оптический журнал. 2019. Т. 86. № 7. С. 42–47. http://doi.org/10.17586/1023-5086-2019-86-07-42-47
Bolbasova L.A., Gritsuta A.N., Kopylov E.A., et al. Atmospheric turbulence meter based on a Shack–Hartmann wavefront sensor // J. Opt. Technol. 2019. V. 86. № 7. P. 426. https://doi.org/10.1364/JOT.86. 000426
19. Больбасова Л.А., Ковадло П.Г., Лукин В.П. и др. Особенности дрожания изображения оптического источника в случайной среде с конечным внешним масштабом // Оптика атмосферы и океана. 2012. Т. 25. № 10. С. 845–851. https://doi.org/10.1134/ S1024856013020061
Bolbasova L.A., Kovadlo P.G., Lukin V.P., et al. Features of optical image jitter in random medium with finite outer scale [in Russian] // Atmospheric and Oceanic Optics. 2012. V. 25. № 10. P. 845–851. https://doi.org/10.1134/S1024856013020061
20. Borzilov A.G., Gritsuta A.N., Konyaev P.A., et al. Image jitter meter for low intensity radiation // Proc. SPIE. 2022. V. 12341. P. 12341 0F. https://doi.org/10.1117/12.2644417
21. Bolbasova L.A., Kopylov E.A. Long-term trends of astroclimatic parameters above the Terscol Observatory // MDPI. Atmosphere. 2023. V. 14. № 8. P. 1264. https://doi.org/10.3390/atmos14081264
22. Potanin S.A., Kopylov E.A., Savvin A.D. Mobile differential image motion monitor for astroclimate researsch // Astrophysical Bulletin. 2024. V. 79. № 2. P. 350. https://doi.org/10.1134/S1990341323600424
23. Больбасова Л.А., Лукин В.П., Соин Е.Л. Экспериментальные исследования влияния потери данных измерений на качество реконструкции искажённого атмосферной турбулентностью волнового фронта датчиком Шэка–Гартмана // Оптический журнал. 2024. Т. 91. № 8. С. 25–34. http://doi.org/0.17586/1023-5086-2024-91-08-25-34
Bolbasova L.A., Lukin V.P., Soin E.L. Experimental studies of the effect of measurement data loss on the quality of reconstruction of a wave front distorted by atmospheric turbulence by a Shack–Hartmann sensor // J. Opt. Technol. 2024. V. 91. № 8. https://doi. org/10.1364/JOT.91.000000