DOI: 10.17586/1023-5086-2025-92-03-58-67
УДК: 535.44
A Mach–Zehnder interferometer based on cube corner reflectors and beams with a controlled polarization structure
Full text on elibrary.ru
Решетников Д.Д., Рыжая А.А., Павелина М.Е., Вашукевич Е.А., Севрюгин А.А., Соколов А.Л., Венедиктов В.Ю., Петров В.М. Интерферометр Маха–Цендера на основе уголковых отражателей и пучки с управляемой поляризационной структурой // Оптический журнал. 2025. Т. 92. № 3. С. 58–67. http://doi.org/10.17586/1023-5086-2025-92-03-58-67
Reshetnikov D.D., Ryzhaya A.A., Pavelina M.E., Vashukevich E.A., Sevryugin A.A., Sokolov A.L., Venediktov V.Yu., Petrov V.M. A Mach–Zehnder interferometer based on cube corner reflectors and beams with a controlled polarization structure [in Russian] // Opticheskii Zhurnal. 2025. V. 92. № 3. P. 58–67. http://doi.org/10.17586/1023-5086-2025-92-03-58-67
Subject of study. Generation of optical beams with orbital angular momentum in a modified polarization Mach–Zehnder interferometer using cube corner retroreflectors. Aim of the study. Development and experimental study of a new interferometer design, which uses cube corner retroreflectors with special phase-shifting coatings, to generate beams with optical vortices having non-zero topological charge values and various polarization structures. Method. To generate an optical vortex, a modified scheme of the Mach–Zehnder interferometer was used, in which cube corner reflectors, coupled with polarization elements, create the necessary beam structure. The diffraction patterns were observed in the near and far field zones. Main results. The study developed an interferometer design capable of generating beams with axially symmetric polarization structures. The experimental results demonstrated the possibility of generating second-order optical vortices with such interferometer. Additionally, it was shown that the vortex structure could be controlled by varying the polarization states of the reflected beams. Practical significance. The proposed interferometer design can be applied to generate optical vortices in quantum communication and quantum cryptography systems, as well as in satellite optical data transmission systems. The design offers high flexibility and allows the formation of vortex beams with different parameters, which is important for high-speed communication applications.
structured light, optical vortex, retroreflectors, cubic corner reflectors, polarization of light, polarization interferometer, axially-symmetrical polarization beams
OCIS codes: 110.0110, 260.3160, 3000.30970
References:1. Li L., Zhang R., Zhao Z., et al. High-capacity freespace optical communications between a ground transmitter and a ground receiver via a UAV using multiplexing of multiple orbital-angular-momentum beams // Sci. Rep. 2017. V. 7. P. 17427. https://doi. org/10.1038/s41598-017-17580-y
2. Willner A.E., Pang K., Song H., et al. Orbital angular momentum of light for communications // Appl. Phys. Rev. 2021. V. 8. P. 041312. https://doi.org/10.1063/5.0054885
3. Wang J. Advances in communications using optical vortices // Photon. Res. 2016. V. 4. P. B14–B28. https://doi.org/10.1364/PRJ.4.000B14
4. Wang S., Zhang Т., Lin Yu, et al. The a satellite-toground quantum key distribution protocol based on orbital angular momentum of light // J. Phys.: Conf. Ser. 2021. V. 1757. P. 012173. https://doi.org/10.1088/1742-6596/1757/1/012173
5. Wang Z., Malaney R., Green J. Detecting orbital angular momentum of light in satellite-to-ground quantum communications // 2019 IEEE Global Commun. Conf. (GLOBECOM). Waikoloa, HI, USA. 2019. P. 1–6. https:// doi.org/10.1109/GLOBECOM38437.2019.9014321
6. Решетников Д.Д., Соколов А.Л., Вашукевич Е.А. и др. Протокол квантового распределения ключа на аксиально-симметричных поляризационных пучках в атмосферном канале // Изв. вузов. Радиофизика. 2024. Т. 67. № 1. С. 58–72. https://doi.org/10.52452/00213462_2024_67_01_58
Reshetnikov D.D., Sokolov A.L., Vashukevich E.A., et al. Quantum key distribution protocol on axially symmetric polarization beams in an atmospheric channel [in Russian] // Radiophysics and Quantum Electronics. 2024. V. 67. № 1. P. 58–72. https://doi.org/10.52452/00213462_2024_67_01_58
7. Соколов А.Л., Петров В.М., Венедиктов В.Ю. и др. Аксиальносимметричные пучки Эрмита–Гаусса и протокол ВВ84 на их основе для канала квантовой криптографии Космос–Земля // Фотоника. 2023. Т. 17. № 7. С. 542–555. https://doi.org/10.22184/1993-7296.FRos.2023.17.7.542.555
Sokolov A.L., Petrov V.M., Venediktov V.Yu., et al. Axially symmetric Hermite–Gaussian beams and BB84 protocol based on them for space-to-Earth quantum cryptography [in Russian] // Photonics. 2023. V. 17. № 7. P. 542–555. https://doi.org/10.22184/1993-7296. FRos.2023.17.7.542.555
8. Sokolov A.L. Optical vortices with axisymmetric polarization structure // Opt. Eng. 2017. V. 56. P. 014109. https://doi.org/10.1117/1.OE.56.1.014109
9. Aksenov V.P., Dudorov V.V., Kolosov V.V. Properties of vortex beams formed by an array of fibre lasers and their propagation in a turbulent atmosphere // Quantum Electron. 2016. V. 46. P. 726–729. https://doi.org/10.1070/QEL16088
10. Аксенов В.П., Погуца Ч.Е. Влияние оптического вихря на случайные смещения Лагерра–Гауссова лазерного пучка, распространяющегося в турбулентной атмосфере // Оптика атмосферы и океана. 2012. Т. 25. № 07. С. 561–565.
Aksenov V.P., Pogutsa C.E. Influence of optical vortex on random displacements of Laguerre–Gaussian laser beam propagating in turbulent atmosphere [in Russian] // Atmospheric and Oceanic Optics. 2012. V. 25. № 07. P. 561–565.
11. Shen Y., Wang X., Xie Z., et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities // Light Sci. Appl. 2019. V. 8. P. 90. https://doi.org/10.1038/s41377-019-0194-2
12. Fatkhiev D.M., Butt M.A., Grakhova E.P., et al. Recent advances in generation and detection of orbital angular momentum optical beams — a review // Sensors. 2021. V. 21. P. 4988. https://doi.org/10.3390/ s21154988
13. Cheng J., Wan C., Zhan Q. High-resolution optical orbital angular momentum sorter based on Archimedean spiral mapping // Opt. Exp. 2022. V. 30. P. 16330. https://doi.org/10.1364/OE.455987
14. Lian Y., Qi X., Wang Y., et al. OAM beam generation in space and its applications: A review // Opt. Lasers Eng. 2022. V. 151. P. 106923. https://doi.org/10.1016/j.optlaseng.2021.106923
15. Turtaev S., Leite I.T., Mitchell K.J., et al. Comparison of nematic liquid-crystal and DMD based spatial light modulation in complex photonics // Opt. Exp. 2017. V. 25. P. 29874. https://doi.org/10.1364/oe.25.029874
16. Ayoub A.B., Psaltis D. High speed, complex wavefront shaping using the digital micro-mirror device // Sci. Rep. 2021. V. 11. P. 1. https://doi.org/10.1038/s41598-021-98430-w
17. Huang H., Milione G., Lavery M., et al. Mode division multiplexing using an orbital angular momentum mode sorter and MIMO-DSP over a graded-index few-mode optical fibre // Sci. Rep. 2015. V. 5. P. 14931. https://doi.org/10.1038/srep14931
18. Венедиктов В.Ю., Гаврильева К.Н., Гудин Ю.С. и др. Поляризационный интерферометр и структурированный свет // Фотоника. 2022. Т. 16. № 3. С. 226–235. https://doi.org/10.22184/1993-7296.FRos. 2022.16.3.226.234
Venediktov V.Yu., Gavrilieva K.N., Goudin Yu.S., et al. Polarization interferometer and structured light [in Russian] // Photonics. 2022. V. 16. № 3. P. 226–235. https://doi.org/10.22184/1993-7296.FRos.2022.16. 3.226.234
19. Sokolov A.L., Murashkin V.V. Retroreflective spatial-polarization interferometer // Appl. Opt. 2020. V. 59. P. 9912–9923. https://doi.org/10.1364/AO. 403232
20. Рыжая А.А., Юрьева Е.К., Евтушенко Б.А. и др. Генерация оптического вихря второго порядка в поляризационном интерферометре // Оптический журнал. 2024. Т. 91. № 3. С. 23–31. https://doi.org/10.17586/1023-5086-2024-91-03-23-31
Ryzhaya A.A., Yuryeva E.K., Evtushenko B.A., et al. Generation of a second-order optical vortex in a polarization interferometer // J. Opt. Technol. 2024. V. 91. № 3. P. 147–151. https://doi.org/10.1364/JOT.91. 000147
21. Петров В.М., Агрузов П.М., Лебедев В.В. и др. Широкополосные интегрально-оптические модуляторы: достижения и перспективы развития // УФН. 2021. Т. 191. № 7. С. 760–782. https://doi.org/10.3367/ UFNr.2020.11.038871
Petrov V.M., Agruzov P.M., Lebedev V.V., et al. Broadband integrated optical modulators: Achievements and development prospects // Uspekhi Phys. Nauk. 2021. V. 191. № 7. P. 760–782. https://doi.org/10.3367/UFNе.2020.11.038871