DOI: 10.17586/1023-5086-2025-92-03-68-78
УДК: 535.326, 535.317.9, 681.7.067.222.2
Methodology for designing infrared objectives with homogeneous, gradient-index and diffractive elements
Full text on elibrary.ru
Грейсух Г.И., Левин И.А., Ежов Е.Г. Методика проектирования инфракрасных объективов с однородными, градиентными и дифракционными элементами // Оптический журнал. 2025. Т. 92. № 3. С. 68–78. http://doi.org/10.17586/1023-5086-2025-92-03-68-78
Greisukh G.I., Levin I.A., Ezhov E.G. Methodology for designing infrared objectives with homogeneous, gradient-index and diffractive elements [in Russian] // Opticheskii Zhurnal. 2025. V. 92. № 3. P. 68–78. http://doi.org/10.17586/1023-5086-2025-92-03-68-78
Subject of the study. Simple in design infrared objectives that include, along with homogeneous lenses, a single radial gradient-index lens or a gradient-index lens and a diffractive optical element together. Purpose of the study. Development of a methodology for the layout and calculation of simpledesign lenses for the infrared spectrum with hybrid element base. The research method. Theoretical analysis, computer modeling and optimization using the ZEMAX optical design program. The main results. The presented methodology covers all stages of the layout and calculation of the lens. It includes selection of optical materials for all its elements, recommendations on using the optical scheme obtained from the condition of its achromatization, apochromatization or superchromatization as the initial one for subsequent optimization in the ZEMAX optical design program, as well as on combining a gradient lens with a diffractive optical element in the objective scheme and calculating a super-high-aperture dual-range gradient-diffractive objective. The efficiency of both the combined use of gradient and diffractive elements and the presented technique is demonstrated using the example of calculating an ultra-high-aperture gradient-diffractive objective. Practical significance. The results of this study open up the possibility of creating simple-in-design high-aperture dual-band infrared objectives based on coaxially laminated radial gradient-index lenses.
coaxial-laminated radial gradient-index lens, a technique for the layout and calculation of simple infrared objectives, diffractive optical element, ultra-high-speed dual-band, gradientdiffractive objective
Acknowledgements:OCIS codes: 110.2760, 110.3080, 220.3620
References:1. Beadie G., Stover E., Gibson D. Temperature-dependent dispersion fitting for a recent infrared glass catalog // Proc. SPIE. 2019. V. 10998. P. 1099804 (6 p). https://doi.org/10.1117/12.2518494
2. Bayya S., Gibson D., Nuygen V., et al. Design and fabrication of multispectral optics using expanded glass map // Proc. SPIE. 2015. V. 9451. P. 94511N (7 p). https://doi.org/10.1117/12.2177289
3. Gibson D., Bayya S., Nuygen V., et al. Diffusion-based gradient index optics for infrared imaging // Opt. Eng. 2020. V. 59. № 11. Р. 112604. https://doi.org/10.1117/1.OE.59.11.112604
4. Gibson D., Bayya S., Nuygen V., et al. IR GRIN optics for imaging // Proc. SPIE. 2016. V. 9822. P. 98220R (9 p). https://doi.org/10.1117/12.2224094
5. Gibson D., Bayya S., Nuygen V., et al. GRIN optics for multispectral infrared imaging // Proc. SPIE. 2015. V. 9451. P. 94511P (7 p). https://doi.org/10.1117/ 12.2177136
6. Schaub M., Schwiegerling J., Fest E.C., et al. Molded optics design and manufacture. Boca Raton: CRC Press, 2011. 260 p.
7. Электронный ресурс URL: https://www.scd.co.il/wp-content/uploads/2019/07/Bird640-17-ceramic_brochure_v3_PRINT.pdf (SemiConductor Devices).
Electronic resource URL: https://www.scd.co.il/wp-content/uploads/2019/07/Bird640-17-ceramic_brochure_v3_PRINT.pdf (SemiConductor Devices).
8. Электронный ресурс URL: https://astrohn.ru/product/astrohn-64017-2/ (АСТРОН Тепловизионные системы / Продукция / Микроболометрические матричные детекторы / АСТРОН-64017-2).
Electronic resource URL: https://astrohn.ru/product/astrohn-64017-2/ (ASTRON Thermal Image Systems / Product / Microbolometer array sensor / ASTRON-64017-2).
9. Грейсух Г.И., Левин И.А., Ежов Е.Г. Сверхсветосильный тепловизионный триплет с градиентной линзой: этапы моделирования композитного градиентного материала и потенциальные возможности оптической схемы // Оптический журнал. 2024. Т. 91. № 3. С. 5–13. http://doi.org/10.17586/1023-5086-2024-91-03-5-13
Greisukh G.I., Levin I.A., Ezhov E.G. Ultra-highaperture infrared triplet with a GRIN lens: Modeling stages of composite gradient-index material and potential possibilities of the optical system // J. Opt. Technol. 2024. V. 91. P. 137–141. https://doi.org/10.1364/JOT.91.000137
10. Грейсух Г.И., Левин И.А., Ежов Е.Г. Моделирование ламинированной радиально-градиентной линзы; расчет и достижимые характеристики двухдиапазонного инфракрасного триплета с такой линзой // Оптический журнал. 2024. Т. 91. № 10. С. 34–42. http://doi.org/10.17586/1023-5086-2024-91-10-34-42
Greisukh G.I., Levin I.A., Ezhov E.G. Modeling of a radial laminated GRIN lens; design and achievable performances of a dual-band infrared triplet with such lens // J. Opt. Technol. 2024. V. 91. № 10. https://doi.org/10.1364/JOT.91.000000
11. Грейсух Г.И., Левин И.А., Ежов Е.Г. Сверхсветосильный двухдиапазонный градиентно-дифракционный инфракрасный объектив // Оптический журнал. 2024. Т. 91. № 11. С. 34–42. http://doi.org/10.17586/1023-5086-2024-91-11-34-42
Greisukh G.I., Levin I.A., Ezhov E.G. Ultra-high-aperture dual-range gradient-index diffractive infrared objective // J. Opt. Technol. 2024. V. 91. № 11. https://doi.org/10.1364/JOT.91.000000
12. Ryan-Howard D.P., Moore D.T. Model for the chromatic properties of gradient-index glass // Appl. Opt. 1985. V. 24. № 24. P. 4356–4366. https://doi.org/10.1364/AO.24.004356
13. McCarthy P.W. Gradient-index materials, design, and metrology for broadband imaging systems // PhD (Optics) thesis. Rochester: University of Rochester, 2015. 219 p.
14. Greisukh G.I., Bobrov S.T., Stepanov S.A. Optics of diffractive and gradient-index elements and systems. Bellingham: SPIE Press, 1997. 414 p.
15. Электронный ресурс URL: https://www.zemax.com/(ZEMAX: Software for optical system design).
Electronic resource URL: https://www.zemax.com/(ZEMAX: Software for optical system design).