ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2025-92-03-79-88

УДК: 535.4, 681.7.055

Tolerancing research of technical implementation of the angle resolved scattering based on the robotic complex

For Russian citation (Opticheskii Zhurnal):

Машошин Д.А., Денисов Д.Г., Барышников Н.В. Исследование точностных возможностей технической реализации метода дифференциального рассеяния на базе роботизированного комплекса // Оптический журнал. 2025. Т. 92. № 3. С. 79–88. http://doi.org/10.17586/1023-5086-2025-92-03-79-88

 

Mashoshin D.A., Denisov D.G., Baryshnikov N.V. Tolerancing research of technical implementation of the angle resolved scattering based on the robotic complex [in Russian] // Opticheskii Zhurnal. 2025. V. 92. № 3. P. 79–88. http://doi.org/10.17586/1023-5086-2025-92-03-79-88

For citation (Journal of Optical Technology):
-
Abstract:

Subject of study. Technical implementation of the differential scattering method in the form of a robotic complex for quality control of optical surfaces of subnanometer roughness. Aim of study. Determination of the error in the angular positioning of the wrist of a robotic complex when implementing the differential scattering method in the tasks of controlling the roughness parameters of optical surfaces, as well as evaluating the error effect on the result of measuring surface roughness. Method. Experimental determination of the angular positioning error and assessment of the measured error influence by mathematical modeling. Main results. The original scheme of the technical implementation of the differential scattering method based on a robotic complex is shown and the angular repeatability of the robotic manipulators ends position, the error of their angular positioning is calculated and its effect on the measurement result is investigated. Practical significance. The results obtained in the work of determining the accuracy of the technical implementation of the angle resolved scattering method contribute to the creation of a finished product — an optoelectronic complex of optical surface quality control equipment, which is capable of measuring a level roughness of angstrom units.

Keywords:

angle resolved scattering, robotic complex, roughness measurement, angular positioning error

OCIS codes: 120.6660, 290.1483

References:

1. Blanco J.R., McMarr P.J., Vedam K. Roughness measurements by spectroscopic ellipsometry // Appl. Opt. 1985. V. 24. № 22. P. 3773–3779. http://doi.org/10.1063/1.337582
2. Fang S.J., Chen W., Yamanaka T., et al. Comparison of Si surface roughness measured by atomic force microscopy and ellipsometry // Appl. Phys. Lett. 1996. V. 68. № 20. P. 2837–2839. http://doi.org/10.1063/1.116341
3. Glenn P.E. Angstrom level profilometry for submillimeter-to meter-scale surface errors // Advanced Optical Manufacturing and Testing. SPIE. 1990. V. 1333. P. 326–336. http://doi.org/10.1117/12.22817
4. Batson P.E. Challenges and opportunities of Ångstrom-level analysis // Microscopy of Semiconducting Materials: Proc. 14th Conf. April 11–14, 2005. Oxford, UK — Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. P. 451–458. http://doi.org/10.1007/3-540-31915-8_96
5. Pavliček P., Hýbl O. White-light interferometry on rough surfaces measurement uncertainty caused by surface roughness // Appl. Opt. 2008. V. 47. № 16. P. 2941–2949. http://doi.org/10.1364/AO.47.002941
6. Кувалдин Э.В. Переносной измеритель шероховатости зеркальной поверхности // Оптический журнал. 2019. Т. 86. № 5. С. 78–81. http://doi.org/10.17586/1023-5086-2019-86-05-78-81
 Kuvaldin E.V. Portable mirror-surface profilometer // J. Opt. Technol. 2019. V. 86. № 5. Р. 323–326. https:// doi.org/10.1364/JOT.86.000323
7. Вилкова Е.Ю., Тимофеев О.В., Носов С.А. и др. Изменение шероховатости поверхности CVD-ZnSe при механической обработке в зависимости от размера зерна суспензии // Оптический журнал. 2013. Т. 80. № 9. С. 68–72.
 Vilkova E.Yu., Timofeev O.V., Nosov S.A., et al. Variation of the surface roughness of CVD ZnSe undergoing mechanical processing as a function of the grain size of the suspension // J. Opt. Technol. 2013. V. 80. № 9. P. 577–581. https://doi.org/10.1364/JOT.80.000577
8. Класс Е.В., Шаховский В.В., Бадюк К.В. и др. Учет шероховатости при расчете отражения оптического излучения в трехмерном объекте // Оптический журнал. 2014. Т. 81. № 2. С. 3–9.
 Klass E.V., Shakhovskiy V.V., Badyuk K.V., et al. Allowing for roughness when calculating the reflection of optical radiation in a three-dimensional object // J. Opt. Technol. 2014. V. 81. № 2. P. 56–60. https://doi.org/10.1364/JOT.81.000056
9. Рытов С.М. Введение в статистическую радиофизику. Случайные поля. М.: Наука, 1966. Часть II. 404 c.  Rytov S.M. Introduction to statistical radio physics.
Randomf fields [in Russian]. Moscow: "Nauka" Publ., 1966. Part II. 404 p.
10. Beckmann P., Spizzichino A. The scattering of electromagnetic waves from rough surface. Norwood: Pergamon Press, ARTECHHOUSE, 1987. 497 p.
11. Денисов Д.Г., Карасик В.Е. Анализ влияния спеклструктуры на качество изображения интерференционной картины при контроле крупногабаритных оптических поверхностей на стадиях шлифования // Вестник Московского государственного технического университета им. Н.Э. Баумана. Сер. Приборостроение. 2011. T. 83. № 2. С. 36–47.
 Denisov D.G., Karasik V.E. Analysis of the effect of speckle structure on the image quality of the interference pattern during the control of large-sized optical surfaces at the grinding stages [in Russian] // Bulletin of the Bauman Moscow State Technical University. Instrument Eng. Ser. 2011. V. 83. № 2. P. 36–47.
12. Денисов Д.Г. Анализ влияния ограничительных факторов в методе дифференциального рассеяния при контроле поверхностных неоднородностей субнанометрового уровня профилей оптических деталей // Прикладная физика. 2022. № 1. С. 89–96. https://doi.org/10.51368/1996-0948-2022-1-89-96
 Denisov D.G. The analysis of the influence of limiting factors in the method of differential scattering in the control of surface inhomogeneities of the subnanometer level of the profiles of optical parts [in Russian] // Prikladnaya Fizika. 2022. № 1. P. 89–96. https://doi.org/10.51368/1996-0948-2022-1-89-96
13. Барышников Н.В., Гладышева Я.В., Денисов Д.Г. и др. Исследование интерференционных методов контроля формы и качества высокоточных поверхностей крупногабаритных оптических деталей // Инженерный журнал: наука и инновации. 2012. № 9. С. 4–16.
 Baryshnikov N.V., Gladysheva Ya.V., Denisov D.G., et al. Investigation of interference methods for controlling the shape and quality of high-precision surfaces of large-sized optical parts [in Russian] // Engineering J.: Sci. and Innovation. 2012. № 9. P. 4–16.
14. Elson J.M., Bennett J.M. Calculation of the power spectral density from surface profile data // Appl. Opt. 1995. V. 34. № 1. P. 201–208. https://doi.org/ 10.1364/ AO.34.000201
15. Youngworth R.N., Gallagher B.B., Stamper B.L. An overview of power spectral density (PSD) calculations // Optical Manufacturing and Testing VI. 2005. V. 5869. P. 206–216. https://doi.org/10.1117/12.618478

16. Lawson J.K., Wolfe C.R., Manes K.R., et al. Specification of optical components using the power spectral density function // Optical Manufacturing and Testing. SPIE. 1995. V. 2536. P. 38–50. https://doi.org/10.1117/12.218430
17. ГОСТР ИСО 4287—2014. Геометрические характеристики изделий (GPS). Структура поверхности. Профильный метод. Термины, определения и параметры структуры поверхности. Введ. 01.01.2016. М.: Стандартинформ, 2019. 18 с.
 GOST R (Russian National Standard) ISO 4287-2014.  Geometric characteristics of products (GPS). The structure of the surface. The profile method. Terms, definitions and parameters of the surface structure [in Russian]. Introd. 01/01/16. Moscow: Standartinform Publ., 2019. 18 p.
18. Электронный ресурс URL: https://www.iof. fraunhofer.de/content/dam/iof/en/documents/pb/enTable-Top-Streulichtmesssystem-Albatross-TT.pdf (Institute for Applied Optics and Precision Engineering — Fraunhofer IOF / Table-top system for light scatter measurement»Albatross-TT« — Fraunhofer IOF)
 Electronic resource URL: https://www.iof.fraunhofer. de/content/dam/iof/en/documents/pb/en-Table-TopStreulichtmesssystem-Albatross-TT.pdf (Institute for Applied Optics and Precision Engineering — Fraunhofer IOF / Table-top system for light scatter measurement »Albatross-TT« — Fraunhofer IOF)
19. Электронный ресурс URL: https://www.iof. fraunhofer.de/content/dam/iof/en/documents/pb/ horos-roughness-sensor-fraunhofer-iof-e.pdf (Institute for Applied Optics and Precision Engineering — Fraunhofer IOF/ »horos« compact optical roughness sensor — Fraunhofer IOF)
 Electronic resource URL: https://www.iof.fraunhofer. de/content/dam/iof/en/documents/pb/horos-roughness-sensor-fraunhofer-iof-e.pdf (Institute for Applied Optics and Precision Engineering — Fraunhofer IOF/ »horos« compact optical roughness sensor — Fraunhofer IOF)
20. Электронный ресурс URL: https://download.dobot. cc/DobotStudio-pro/20231227/Dobot%20CR%20Series%20User%20Guide%20V1.5_20231227_en.pdf (Dobot Robotics / Dobot CR Series User Guide).
 Electronic resource URL: https://download.dobot.cc/D ob ot Stud io-pro/20231227/D ob ot%20 CR%20 Series%20User%20Guide%20V1.5_20231227_en.pdf (Dobot Robotics / Dobot CR Series User Guide).
21. Электронный ресурс URL: https://www.woodwork. ru/catalog/uglovye-izmereniya-i-nastroyki/159886/?a rticul=159871#tabs-2 (WOODWORK — Все инструменты для деревообработки / WOODWORK — Купить Уклономер цифровой магнитный с уровнем DA-01 WOODWORK).
 Electronic resource URL: https://www.woodwork.ru/ catalog/uglovye-izmereniya-i-nastroyki/159886/?articul =159871#tabs-2 (WOODWORK — Все инструменты для деревообработки / WOODWORK — Купить Уклономер цифровой магнитный с уровнем DA-01 WOODWORK).