ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2025-92-03-89-103

УДК: 621.373:535

Squeezed Fock states: Generation and application

For Russian citation (Opticheskii Zhurnal):

 Башмакова Е.Н., Королев С.Б., Зинатуллин Э.Р., Голубев Ю.М., Голубева Т.Ю. Сжатые состояния Фока: генерация и применение // Оптический журнал. 2025. Т. 92. № 3. С. 89–103. http://doi.org/10.17586/1023-5086-2025-92-03-89-103

 

Bashmakova E.N., Korolev S.B., Zinatullin E.R., Golubev Y.M., Golubeva T.Yu. Squeezed Fock states: Generation and application [in Russian] // Opticheskii Zhurnal. 2025. V. 92. № 3. P. 89–103. http://doi.org/10.17586/1023-5086-2025-92-03-89-103

For citation (Journal of Optical Technology):
-
Abstract:

Subject of study. Schemes for generating non-Gaussian quantum states and quantum states required for quantum error correction protocols. Aim of study. Generalization of methods and approaches for describing the generation of non-Gaussian states in measurement schemes, determination of the most effective model for describing the generation process. Generalization of methods and approaches to the description of the generation of non-Gaussian states in circuits with measurements and identification of the most effective model for describing the generation process, as well as consideration of the model for generating compressed Fock states and the error correction code for quantum computing based on such states. Evaluation of a model for generating squeezed Fock states and a quantum error correction code based on such states. Method. A theoretical analysis of the evolution of the wave function of various non-Gaussian states in the particle number measurement schemes. Squeezed states are used as an input. Main results. A scheme for generating squeezed Fock states is theoretically addressed. Construction of an explicit expression for the output wave function is demonstrated. It allows for  a complete analysis of output states depending on the parameters of the schemes under consideration. A set of conditions on the parameters of a two-mode entangled Gaussian state, the so-called "universal solution regime", is discussed. This condition guarantees the generation of the squeezed Fock states with a high probability. Practical significance. It is shown that the "universal solution regime" provides for the generation of an arbitrary order number of squeezed Fock states for a given squeezing parameter. The possibility of using squeezed Fock states in quantum error correction codes is considered. A comparative analysis of squeezed Fock states and squeezed Schrödinger cat states as codewords is carried out. It has been demonstrated that squeezed Fock states are quite competitive for protecting information in a channel with particle loss and dephasing.

Keywords:

squeezed Fock states, squeezed Schrödinger cat states, non-Gaussian states, bosonic error correction codes, quantum state engineering

Acknowledgements:

Bashmakova E.N., Korolev S.B., Zinatullin E.R., Golubev Y.M., Golubeva T.Yu. Squeezed Fock states: Generation and application [in Russian] // Opticheskii Zhurnal. 2025. V. 92. № 3. P. 89–103. http://doi.org/10.17586/1023-5086-2025-92-03-89-103

OCIS codes: 270.0270, 270.6570, 270.1670, 000.6800, 000.2700

References:

1. Braunstein S.L., van Loock P. Quantum information with continuous variables // Rev. Mod. Phys. 2005. V. 77. P. 513. https://doi.org/10.1103/RevModPhys.77.513
2. Niset J., Fiuraek J., Cerf N.J. No-go theorem for gaussian quantum error correction // Phys. Rev. Lett. 2009. V. 102. P. 120501. https://doi.org/10.1103/PhysRevLett. 102.120501
3. Hou L.-L., Sui Y.-X., Wang S., et al. Quantum interferometry via a coherent state mixed with a squeezed number state* // Chin. Phys. B. 2019. V. 28. P. 044203. https://doi.org/10.1088/1674-1056/28/4/044203
4. Sanchez Munoz C., Frascella G., Schlawin F. Quantum metrology of two-photon absorption // Phys. Rev. Res. 2021. V. 3. P. 033250. https://doi.org/10.1103/PhysRevResearch.3.033250
5. Lee J., Park J., Nha H. Quantum non-gaussianity and  secure quantum communication // npj Quantum Inf. 2019. V. 5. № 1. P. 49. https://doi.org/10.1038/s41534-019-0164-9
6. Guo Y., Ye W., Zhong H., et al. Continuous-variable quantum key distribution with non-gaussian quantum catalysis // Phys. Rev. A. 2019. V. 99. P. 032327. https://doi.org/10.1103/PhysRevA.99.032327
7. Zinatullin E.R., Korolev S.B., Golubeva T.Y. Teleportation protocols with non-gaussian operations: Conditional photon subtraction versus cubic phase gate // Phys. Rev. A. 2023. V. 107. P. 022422. https://doi.org/10.1103/PhysRevA.107.022422
8. Zinatullin E.R., Korolev S.B., Golubeva T.Y. Teleportation with a cubic phase gate // Phys. Rev. A. 2021. V. 104. P. 032420. https://doi.org/10.1103/PhysRevA. 104.032420
9. Baeva A.V., Veselkova N.G., Masalaeva N.I., et al. Measurement-assisted non-gaussian gate for Schrodinger cat states preparation: Fock resource state versus cubic phase state // The European Phys. J. D. 2024. V. 78. P. 12. https://doi.org/10.1140/epjd/s10053-023-00796-1
10. Baeva A., Losev A., Sokolov I. Schrodinger cat states prepared by logical gate with non-gaussian resource state: Effect of finite squeezing and efficiency versus monotones // Phys. Lett. A. 2023. V. 466. P. 128730. https://doi.org/10.1016/j.physleta.2023.128730
11. Zheng Y., Hahn O., Stadler P., et al. Gaussian conversion protocols for cubic phase state generation // PRX Quantum. 2021. V. 2. P. 010327. https://doi.org/10.1103/PRXQuantum.2.010327
12. Lvovsky A.I. Squeezed light // Photonics: Scientific Foundations, Technology and Applications. 2015. V. 1. P. 121–163. https://doi.org/10.1002/9781119009719.ch5
13. Navarrete-Benlloch C., GarcÕa-Patron R., Shapiro J.H., et al. Enhancing quantum entanglement by photon addition and subtraction // Phys. Rev. A. 2012. V. 86. P. 012328. https://doi.org/10.1103/PhysRevA.86.012328
14. Bartley T.J., Crowley P.J.D., Datta A., et al. Strategies for enhancing quantum entanglement by local photon subtraction // Phys. Rev. A. 2013. V. 87. P. 022313. https://doi.org/10.1103/PhysRevA.87.022313
15. Asavanant W., Takase K., Fukui K., et al. Wave-function engineering via conditional quantum teleportation with a non-gaussian entanglement resource // Phys. Rev. A. 2021. V. 103. P. 043701. https://doi.org/10.1103/ PhysRevA.103.043701
16. Takase K., Yoshikawa J.-I., Asavanant W., et al. Generation of optical Schrodinger cat states by generalized photon subtraction // Phys. Rev. A. 2021. V. 103. P. 013710. https://doi.org/10.1103/PhysRevA. 103.013710
17. Sychev D.V., Ulanov A.E., Pushkina A.A., et al. Enlargement of optical schrodinger’s cat states // Nature Photonics. 2017. V. 11. P. 379. https://doi.org/10.1038/nphoton.2017.57
18. Grimsmo A.L., Combes J., Baragiola B.Q. Quantum computing with rotation-symmetric bosonic codes // Phys. Rev. X. 2020. V. 10. P. 011058. https://doi.org/ 10.1103/PhysRevX.10.011058
19. Ralph T.C., Gilchrist A., Milburn G.J., et al. Quantum computation with optical coherent states // Phys. Rev. A. 2003. V. 68. P. 042319. https://doi.org/10.1103/ PhysRevA.68.042319
20. Hastrup J., Andersen U.L. All-optical cat-code quantum error correction // Phys. Rev. Res. 2022. V. 4. P. 043065. https://doi.org/10.1103/PhysRevResearch. 4.043065
21. Ulanov A.E., Fedorov I.A., Sychev D., et al. Losstolerant state engineering for quantum enhanced metrology via the reverse Hong–Ou–Mandel effect // Nature Commun. 2016. V. 7. P. 11925. https://doi.org/10.1038/ncomms11925
22. Gerrits T., Glancy S., Clement T.S., et al. Generation of optical coherent-state superpositions by numberresolved photon subtraction from the squeezed vacuum // Phys. Rev. A. 2010. V. 82. P. 031802. https://doi.org/10.1103/PhysRevA.82.031802
23. Podoshvedov M.S., Podoshvedov S.A., Kulik S.P. Algorithm of quantum engineering of large-amplitude high-fidelity Schrodinger cat states // Sci. Rep. 2023. V. 13. P. 3965. https://doi.org/10.1038/s41598-023-30218-6
24. Thekkadath G.S., Bell B.A., Walmsley I.A., et al. Engineering Schrodinger cat states with a photonic evenparity detector // Quantum. 2020. V. 4. P. 239. https://doi.org/10.22331/q-2020-03-02-239
25. Takahashi H., Wakui K., Suzuki S., et al. Generation of large-amplitude coherent-state superposition via ancilla-assisted photon subtraction // Phys. Rev. Lett. 2008. V. 101. P. 233605. https://doi.org/10.1103/PhysRevLett.101.233605
26. Olivares S., Paris M.G. Squeezed Fock state by inconclusive photon subtraction // J. Opt. B: Quantum and Semiclassical Optics. 2005. V. 7. S616. https://doi.org/10.1088/1464-4266/7/12/025
27. Korolev S.B., Bashmakova E.N., Tagantsev A.K., et al. Generation of squeezed Fock states by measurement // Phys. Rev. A. 2024. V. 109. P. 052428. https://doi.org/ 10.1103/PhysRevA.109.052428
28. Dell’Anno F., Buono D., Nocerino G., et al. Non-gaussian swapping of entangled resources // Quantum Inform. Proc. 2018. V. 18. P. 20. https://doi.org/10.1007/s11128-018-2133-1
29. Winnel M.S., Guanzon J.J., Singh D., et al. Deterministic preparation of optical squeezed cat and Gottesman–Kitaev–Preskill states // Phys. Rev. Lett. 2024. V. 132. P. 230602. https://doi.org/10.1103/PhysRevLett. 132.230602
30. Korolev S.B., Bashmakova E.N., Golubeva T.Y. Error correction using squeezed Fock states // Quantum Inform. Proc. 2024. V. 23. P. 354. https://doi.org/10.1007/ s11128-024-04549-w
31. Bashmakova E., Korolev S., Golubeva T.Y. Effect of entanglement in the generalized photon subtraction scheme // Laser Phys. Lett. 2023. V. 20. P. 115203. https://doi.org/10.1088/1612-202X/acf921
32. Dakna M., Knoll L., Welsch D.-G. Quantum state engineering using conditional measurement on a beam splitter // The European Phys. J. D — Atomic, Molecular, Optical and Plasma Phys. 1998. V. 3. P. 295. https://doi.org/10.1007/s100530050177
33. Schlegel D.S., Minganti F., Savona V. Quantum error correction using squeezed schrodinger cat states // Phys. Rev. A. 2022. V. 106. P. 022431. https://doi.org/10.1103/PhysRevA.106.022431
34. Градштейн И.С., Рыжик И.М. Таблицы интегралов, сумм, рядов и произведений / 4-е изд., перераб. при участии Геронимуса Ю.В. и Цейтлина М.Ю. / М.: Физматгиз, 1963. 1100 с.
 Gradshteyn I., Ryzhik I. Table of integrals, series, and products. Academic Press, 2007. 1221 p.
35. Jozsa R. Fidelity for mixed quantum states // J. Modern Opt. 1994. V. 41. P. 2315. https://doi.org/ 10.1080/09500349414552171
36. Kim M.S., de Oliveira F.A.M., Knight P.L. Properties of squeezed number states and squeezed thermal states // Phys. Rev. A. 1989. V. 40. P. 2494. https://doi.org/10.1103/PhysRevA.40.2494
37. Bashmakova E., Korolev S., Golubeva T. Comparison of controlled-z operation and beam-splitter transformation for generation of squeezed fock states by measurement // Phys. Lett. A. 2024. V. 526. P. 129964. https://doi.org/10.1016/j.physleta.2024.129964
38. Korolev S.B., Bashmakova E.N., Golubeva T.Y. Estimation of the set of states obtained in particle number measurement schemes // Laser Phys. Lett. 2024. V. 21. P. 095204. https://doi.org/10.1088/1612-202X/ad6e6f
39. Lindblad G. On the generators of quantum dynamical semigroups // Commun. in Mathematical Phys. 1976. V. 48. P. 119. https://doi.org/10.1007/BF01608499
40. Kraus K. General state changes in quantum theory // Annals of Phys. 1971. V. 64. P. 311. https://doi.org/10.1016/0003-4916(71)90108-4
41. Bergmann M., van Loock P. Quantum error correction against photon loss using multicomponent cat states // Phys. Rev. A. 2016. V. 94. P. 042332. https://doi.org/10.1103/PhysRevA.94.042332
42. Terhal B.M., Weigand D. Encoding a qubit into a cavity mode in circuit qed using phase estimation // Phys. Rev. A. 2016. V. 93. P. 012315. https://doi.org/10.1103/PhysRevA.93.012315
43. Mirrahimi M., Leghtas Z., Albert V.V., et al. Dynamically protected cat-qubits: A new paradigm for universal quantum computation // New J. Phys. 2014. V. 16. P. 045014. https://doi.org/10.1088/1367-2630/16/4/045014
44. Wasilewski W., Banaszek K. Protecting an optical qubit against photon loss // Phys. Rev. A. 2007. V. 75. P. 042316. https://doi.org/10.1103/PhysRevA.75.042316
45. Albert V.V., Noh K., Duivenvoorden K., et al. Performance and structure of single-mode bosonic codes // Phys. Rev. A. 2018. V. 97. P. 032346. https://doi.org/10.1103/PhysRevA.97.032346
46. Terhal B.M., Conrad J., Vuillot C. Towards scalable bosonic quantum error correction // Quantum Sci. and Technol. 2020. V. 5. P. 043001. https://doi.org/10.1088/2058-9565/ab98a5
47. Knill E., Laflamme R. Theory of quantum errorcorrecting codes // Phys. Rev. A. 1997. V. 55. P. 900. https://doi.org/10.1103/PhysRevA.55.900
48. Leghtas Z., Kirchmair G., Vlastakis B., et al. Hardware-efficient autonomous quantum memory protection // Phys. Rev. Lett. 2013. V. 111. P. 120501. https:// doi.org/10.1103/PhysRevLett.111.120501
49. Leviant P., Jiang Q., Xu L., et al. Quantum capacity and codes for the bosonic loss-dephasing channel // Quantum. 2022. V. 6. P. 821. https://doi.org/10.22331/q-2022-09-29-821
50. Reinhold P. Controlling error-correctable bosonic qubits // PhD Thesis. Yale University, 2019.