DOI: 10.17586/1023-5086-2025-92-05-12-25
УДК: 535.42
The optical needles formation by ring gratings of variable height with quantized substrate
Full text on elibrary.ru
Савельев Д.А. Формирование оптических игл кольцевыми решетками переменной высоты с квантованной подложкой // Оптический журнал. 2025. Т. 92. № 5. С. 12–25. http://doi.org/10.17586/1023-5086-2025-92-05-12-25
Savelyev D.A. The optical needles formation by ring gratings of variable height with quantized substrate [in Russian] // Opticheskii Zhurnal. 2025. V. 92. № 5. P. 12–25. http://doi.org/10.17586/1023-5086-2025-92-05-12-25
Subject of study. Analysis of the influence of changing the relief height of subwavelength ring gratings with standard and quantized substrates on the formation of optical needles in the near diffraction zone. Aim of study. Formation of optical needles by variable-height ring gratings with a quantized substrate. Method. The finite difference time domain method was used for numerical simulation. Main results. The fea tures of optical needle formation by variable-height ring gratings with a quantized substrate in the near diffraction zone are investigated. Gaussian beams and Laguerre–Gaussian modes (0,1) with different types of polarization (circular, radial and azimuthal) were used as the input radiation. Numerical simulations have shown that a ring array, which is a combination of two axicons and supplemented with a reverse quantized substrate, is capable of generating a light
spike with a length of over 11 wave lengths for a circularly polarized Gaussian beam. The smallest focal spot size was achieved for a radially polarized Gaussian beam using a direct quantized substrate. Practical significance. The main results of the work can find their application in materials processing, nanolithography, micromanipulation of nanoparticles.
Gaussian beams, optical vortices, optical needles, subwavelength ring gratings, quantized substrate
Acknowledgements:OCIS codes: 050.1970, 050.6624
References:1. Zhang T., Li M., Ye H., et al. Ultra-long and high uniform optical needle generated with genetic algorithm based multifocal positions optimization // Opt. Commun. 2020. V. 460. P. 125178. https://doi.org/10.1016/j.optcom.2019.125178
2. Qi J., Mu Y., Wang S., et al. Birefringent transmissive metalens with an ultradeep depth of focus and high resolution // Photonics Res. 2021. V. 9. № 3. P. 308–316. https://doi.org/10.1364/PRJ.414181
3. Gu M., Li X., Cao Y. Optical storage arrays: A perspective for future big data storage // Light Sci. Appl. 2014. V. 3. № 5. P. e177. https://doi.org/10.1038/lsa.2014.58
4. Shi C., Song Y., Dong B., et al. Generation of longitudinally polarized multi-segment optical needles by tightly focusing RPBG beam // Optoelectron. Lett. 2023. V. 19. № 7. P. 399–404. https://doi.org/10.1007/s11801-023-2184-0
5. Zhao P.C., Gao X.Z., Zhao J.H., et al. Achieving ultralong optical needles with a duplex vector optical field and parabolic hybrid mask // JOSA A. 2021. V. 38. № 12. P. 1823–1829. https://doi.org/10.1364/JOSAA.442491
6. Yang J., Gong L., Shen Y., et al. Synthetic Bessel light needle for extended depth-of-field microscopy // Appl.Phys. Lett. 2018. V. 113. № 18. P. 181104. https://doi.org/10.1063/1.5058163
7. Kozawa Y., Nakamura T., Uesugi Y., et al. Wavefront engineered light needle microscopy for axially resolved rapid volumetric imaging // Biomed. Opt. Exp. 2022. V. 13. № 3. P. 1702–1717. https://doi.org/10.1364/BOE.449329
8. Liu T., Liu Q., Yang S.M., et al. Shaping a far-field optical needle by a regular nanostructured metasurface // Opt. Commun. 2017. V. 393. P. 72–76. https://doi.org/10.1016/j.optcom.2017.02.031
9. Liu T., Tan J., Liu J., et al. Modulation of a superGaussian optical needle with high-NA Fresnel zone plate // Opt. Lett. 2013. V. 38. № 15. P. 2742–2745. https://doi.org/10.1364/OL.38.002742
10. Савельев Д.А. Исследование особенностей фокусировки вихревых супергауссовых пучков при изменении высоты дифракционного аксикона // Компьютерная оптика. 2021. Т. 45. № 2. C. 214–221. https://doi.org/10.18287/2412-6179-CO-862
Savelyev D.A. The investigation of the features of focusing vortex super-Gaussian beams with a variableheight diffractive axicon [in Russian] // Computer Optics. 2021. V. 45. № 2. P. 214–221. https://doi.org/10.18287/2412-6179-CO-862
11. Savelyev D.A., Karpeev S.V. Development of 3D microstructures for the formation of a set of optical traps on the optical axis // Photonics. 2023. V. 10. № 2. P. 117. https://doi.org/10.3390/photonics10020117
12. Shi C., Xu Z., Nie Z., et al. Sub-wavelength longitudinally polarized optical needle arrays generated with tightly focused radially polarized Gaussian beam // Opt. Commun. 2022. V. 505. P. 127506. https://doi.org/10.1016/j.optcom.2021.127506
13. Ren L., Zhong Z., Zhang B. Transversely polarized ultra-long optical needles generated by cylindrical polarized circular airy Gaussian vortex beams // Opt. Commun. 2021. V. 483. P. 126618. https://doi.org/10.1016/ j.optcom.2020.126618
14. Savelyev D.A. The features of the optical traps formation using silicon ring gratings with variable height // Photonics. 2023. V. 10. № 11. P. 1264. https://doi.org/10.3390/photonics10111264
15. Порфирьев А.П., Кучмижак А.А., Гурбатов С.О. и др. Фазовые сингулярности и оптические вихри в фотонике // УФН. 2022. Т. 192. № 8. С. 841–866. https://doi.org/10.3367/UFNr.2021.07.039028
Porfirev A.P., Kuchmizhak A.A., Gurbatov S.O., et al. Phase singularities and optical vortices in photonics // Phys. Usp. 2022. V. 192. № 8. P. 841–866. https://doi.org/10.3367/UFNe.2021.07.039028
16. Lippman D.H., Kochan N.S., Yang T., et al. Freeform gradient-index media: A new frontier in freeform optics // Opt. Exp. 2021. V. 29. № 22. P. 36997–37012. https://doi.org/10.1364/OE.443427
17. Richardson K.A., Kang M., Sisken L., et al. Advances in infrared gradient refractive index (GRIN) materials: A review // Opt. Eng. 2020. V. 59. № 11. P. 112602–112602. https://doi.org/10.1117/1.OE.59.11.112602
18. Guo C., Urner T., Jia S. 3D light-field endoscopic imaging using a GRIN lens array // Appl. Phys. Lett. 2020. V. 116. № 10. P. 101105. https://doi.org/10.1063/1.5143113
19. Savelyev D., Kazanskiy N. Near-field vortex beams diffraction on surface micro-defects and diffractive axicons for polarization state recognition // Sensors. 2021. V. 21. № 6. P. 1973. https://doi.org/10.3390/s21061973
20. Soifer V.A. Computer design of diffractive optics. Woodhead Publishing Series in Electronic and Optical Materials 50, 2013. 896 p.