ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2025-92-05-38-49

УДК: 535.421, 681.7.026.53

Laser writing of amplitude masks and binary holograms on Si/Cr films with layer-by-layer selective etching

For Russian citation (Opticheskii Zhurnal):

Белоусов Д.А., Куц Р.И., Корольков В.П., Малышев А.И., Капустина Д.Е. Лазерная запись амплитудных масок и бинарных голограмм на пленках Si/Cr с послойным селективным травлением // Оптический журнал. 2025. Т. 92. № 5. С. 38–49. http://doi.org/10.17586/1023-5086-2025-92-05-38-49

Belousov D.A., Kuts R.I., Korolkov V.P., Malyshev A.I., Kapustina D.E. Laser writing of amplitude masks and binary holograms on Si/Cr films with layer-by-layer selective etching  [in Russian] // Opticheskii Zhurnal. 2025. V. 92. № 5. P. 38–49. http://doi.org/10.17586/1023-5086-2025-92-05-38-49

For citation (Journal of Optical Technology):

Dmitrij A. Belousov, Roman I. Kuts, Victor P. Korolkov, Anatoly I. Malyshev, and Daria E. Kapustina, "Laser writing of amplitude masks and binary holograms on Si/Cr films with layer-by-layer selective etching," Journal of Optical Technology. 92(5), 303-309 (2025).  https://doi.org/10.1364/JOT.92.000303  

Abstract:

Scope of research. A method for producing masks and holograms based on thermochemical laser writing on Si/Cr films and layer-by-layer selective etching. The purpose of the research is elimination of the disadvantages of thermochemical laser writing on chromium films by sputtering a silicon capping layer and introducing an additional stage of selective etching. Method. In conventional thermochemical laser writing, a latent oxide image is formed on chromium, which is developed in a selective etchant. The Si layer on the Cr film during thermochemical laser writing leads to the formation of a metal silicide mask, for the development of which an etching of unexposed areas of the Si film is added. Main results. It is shown that Si deposition allows to expand the laser beam power range for writing a mask on a Cr film by up to 3.3 times, as well as to increase the spatial resolution by 20% compared to a single-layer Cr film. The formed metal silicide masks are developed by two-stage etching, which provides a uniquely high selectivity with respect to silicon and chromium. Practical significance. High selectivity of modified areas of Si/Cr film allows minimizing errors during development of the masks in chromium etchant. Significant change in light reflection from modified Si/Cr film allows control of the formed pattern before its development.

Keywords:

thermochemical laser writing, multilayer films, selective etching, metal-silicide masks, binary holograms, silicon capping layer

Acknowledgements:

the research was supported by subsidy for financial support of the state assignment of the IA&E SB RAS (state registration № 124041700107-9). The equipment of the Central Research Center "Spectroscopy and Optics" of the IA&E SB RAS and Core Facilities VTAN NSU were used in the research.

OCIS codes: 050.1950, 050.6875, 110.4235

References:
  1. A. G. Poleshchuk and V. P. Korolkov, “Laser writing systems and technologies for fabrication of binary and continuous relief diffractive optical elements,” Proc. SPIE 6732, 67320X (2007).
    [Crossref]
  2. A. G. Poleshchuk, V. P. Korolkov, R. K. Nasyrov, et al., “Computer generated holograms: fabrication and application for precision optical testing,” Proc. SPIE 7102, 710206 (2008).
    [Crossref]
  3. H. Wie, Z. Zhang, Q. Cheng, et al., “Fabrication of a large computer-generated hologram with high diffraction efficiency and high accuracy by scanning homogenization etching,” Opt. Express 32(1), 825–834 (2024).
    [Crossref]
  4. G. J. Swanson and W. B. Veldkamp, “Diffractive optical elements for use in infrared system,” Opt. Eng. 28(6), 286605 (1989).
    [Crossref]
  5. C. Pruss, S. Reichelt, H. J. Tiziani, et al., “Metrological features of diffractive high-efficiency objectives for laser interferometry,” Proc. SPIE 4900, 873–884 (2002).
    [Crossref]
  6. V. P. Veiko, V. P. Korolkov, A. G. Poleshchuk, et al., “Laser technologies in micro-optics. Part 1. Fabrication of diffractive optical elements and photomasks with amplitude transmission,” Optoelectron. Instrument. Proc. 53(5), 474–483 (2017) [Avtometriya 53(5), 66–77 (2017)].
    [Crossref]
  7. V. P. Koronkevich, A. G. Poleshchuk, E. G. Churin, et al., “Laser thermochemical technology for synthesizing optical diffraction elements utilizing chromium films,” Sov. J. Quantum Electron. 15(4), 494–497 (1985) [Kvantovaya Elektronika 12(4), 755–761 (1985)].
    [Crossref]
  8. V. P. Korolkov, R. K. Nasyrov, A. G. Sedukhin, et al., “New methods of manufacturing high-aperture computer-generated holograms for reference wavefronts shaping in interferometry,” Optoelectron. Instrument. Proc. 56(2), 140–149 (2020) [Avtometriya 56(2), 42–54 (2020)].
    [Crossref]
  9. V. P. Veiko and A. G. Poleshchuk, Fundamentals of Laser-Assisted Micro- and Nanotechnologies: Laser-Induced Local Oxidation of Thin Metal Films: Physical Fundamentals and Applications, V. P. Veiko and V. I. Konov, eds. (Springer, Cham, 2014), pp. 149–171.
  10. D. Bialuschewski, Laser-Assisted Modification of Metals and Metal Oxide Semiconductors as Photoactive Materials (Dr. Hut Verlag, München, 2020).
  11. E. A. Shakhno, D. A. Sinev, and A. M. Kulazhkin, “Features of laser oxidation of thin films of titanium,” J. Opt. Technol. 81(5), 298–302 (2014) [Opt. Zh. 81(5), 93–98 (2014)].
    [Crossref]
  12. F. Xia, L. Jiao, D. Wu, et al., “Mechanism of pulsed-laser-induced oxidation of titanium films,” Opt. Mater. Express 9(10), 4097–4103 (2019).
    [Crossref]
  13. V. P. Korolkov, A. G. Sedukhin, D. A. Belousov, et al., “Increasing the spatial resolution of direct laser writing of diffractive structures on thin films of titanium group metals,” Proc. SPIE 11030, 110300A (2019).
    [Crossref]
  14. R. I. Kuts, V. P. Korolkov, S. L. Mikerin, et al., “Volumetric thermochemical laser writing of nanostructured reflective diffraction gratings on a dual-layer Zr/SiO2 material,” J. Opt. Technol. 90(4), 163–169 (2023) [Opt. Zh. 90(4), 5–17 (2023)].
    [Crossref]
  15. D. A. Belousov, R. I. Kuts, K. A. Okotrub, et al., “Direct laser writing of diffractive structures on bi-layer Si/Ti films coated on fused silica substrates,” Photonics 10(7), 771 (2023).
    [Crossref]
  16. F. Nava, G. Majni, A. Luches, et al., “Laser and electron-beam induced formation of metal-silicides,” J. Phys. Colloq. 41(C4), C4-97–C4-100 (1980).
    [Crossref]
  17. E. D’Anna, A. V. Drigo, G. Leggieri, et al., “Synthesis of chromium silicide with laser pulses,” Appl. Phys. A 50, 411–415 (1990).
    [Crossref]
  18. D. A. Belousov, R. I. Kuts, and V. P. Korolkov, “Thermochemical laser writing of silicide masks on dual-layer films a-Si/Cr,” Proc. SPIE 12762, 127620W (2023).
    [Crossref]
  19. V. P. Korolkov, R. I. Kuts, A. I. Malyshev, et al., “Dry method for the formation of reflective phase DOEs using direct laser writing on thin Zr films,” Proc. SPIE 11551, 115511O (2020).
    [Crossref]
  20. A. G. Poleshchuk, E. G. Churin, V. P. Koronkevich, et al., “Polar coordinate laser pattern generator for fabrication of diffractive optical elements with arbitrary structure,” Appl. Opt. 38(8), 1295–1301 (1999).
    [Crossref]