DOI: 10.17586/1023-5086-2025-92-05-38-49
УДК: 535.421, 681.7.026.53
Laser writing of amplitude masks and binary holograms on Si/Cr films with layer-by-layer selective etching
Full text on elibrary.ru
Белоусов Д.А., Куц Р.И., Корольков В.П., Малышев А.И., Капустина Д.Е. Лазерная запись амплитудных масок и бинарных голограмм на пленках Si/Cr с послойным селективным травлением // Оптический журнал. 2025. Т. 92. № 5. С. 38–49. http://doi.org/10.17586/1023-5086-2025-92-05-38-49
Belousov D.A., Kuts R.I., Korolkov V.P., Malyshev A.I., Kapustina D.E. Laser writing of amplitude masks and binary holograms on Si/Cr films with layer-by-layer selective etching [in Russian] // Opticheskii Zhurnal. 2025. V. 92. № 5. P. 38–49. http://doi.org/10.17586/1023-5086-2025-92-05-38-49
Scope of research. A method for producing masks and holograms based on thermochemical laser writing on Si/Cr films and layer-by-layer selective etching. The purpose of the research is elimination of the disadvantages of thermochemical laser writing on chromium films by sputtering a silicon capping layer and introducing an additional stage of selective etching. Method. In conventional thermochemical laser writing, a latent oxide image is formed on chromium, which is developed in a selective etchant. The Si layer on the Cr film during thermochemical laser writing leads to the formation of a metal silicide mask, for the development of which an etching of unexposed areas of the Si film is added. Main results. It is shown that Si deposition allows to expand the laser beam power range for writing a mask on a Cr film by up to 3.3 times, as well as to increase the spatial resolution by 20% compared to a single-layer Cr film. The formed metal silicide masks are developed by two-stage etching, which provides a uniquely high selectivity with respect to silicon and chromium. Practical significance. High selectivity of modified areas of Si/Cr film allows minimizing errors during development of the masks in chromium etchant. Significant change in light reflection from modified Si/Cr film allows control of the formed pattern before its development.
thermochemical laser writing, multilayer films, selective etching, metal-silicide masks, binary holograms, silicon capping layer
Acknowledgements:the research was supported by subsidy for financial support of the state assignment of the IA&E SB RAS (state registration № 124041700107-9). The equipment of the Central Research Center "Spectroscopy and Optics" of the IA&E SB RAS and Core Facilities VTAN NSU were used in the research.
OCIS codes: 050.1950, 050.6875, 110.4235
References:1. Poleshchuk A.G., Korolkov V.P. Laser writing systems and technologies for fabrication of binary and continuous relief diffractive optical elements // Proc. SPIE. 2007. V. 6732. P. 130–139. https://doi.org/10.1117/12.751930
2. Poleshchuk A.G., Korolkov V.P., Nasyrov R.K., et al. Computer-generated holograms: Fabrication and application for precision optical testing // Proc. SPIE. 2008. V. 7102. Р. 96–104. https://doi.org/10.1117/12.797816
3. Wie H., Zhang Z., Cheng Q., et al. Fabrication of a large computer-generated hologram with high diffraction efficiency and high accuracy by scanning homogenization etching // Opt. Exp. 2024. V. 32. Р. 825–834. https://doi.org/10.1364/OE.511026
4. Swanson G.J., Veldkamp W.B. Diractive optical elements for use in infrared system // Opt. Eng. 1989. V. 28. № 6. P. 605–608. https://doi.org/10.1117/12.7977008
5. Pruss C., Reichelt S., Tiziani H.J., et al. Metrological features of diffractive high-efficiency objectives for laser interferometry // Proc. SPIE. 2002. V. 4900. P. 873–884. https://doi.org/10.1117/12.484473
6. Вейко В.П., Корольков В.П., Полещук А.Г. и др. Лазерные технологии в микрооптике. Ч. 1. Изготовление дифракционных оптических элементов и фотошаблонов с амплитудным пропусканием // Автометрия. 2017. Т. 53. № 5. С. 66–77. https://doi.org/10.15372/AUT20170507
Veiko V.P., Korolkov V.P., Poleshchuk A.G., et al. Laser technologies in micro-optics. Part 1. Fabrication of diffractive optical elements and photomasks with amplitude transmission // Optoelectron. Instrum. Proc. 2017. V. 53. P. 474–483. http://doi.org/10.3103/S8756699017050077
7. Коронкевич В.П., Полещук А.Г., Чурин Е.Г. и др. Лазерная термохимическая технология синтеза дифракционных оптических элементов на пленках хрома // Квант. электрон. 1985. Т. 12. № 4. С. 755–761. https://doi.org/10.1070/QE1985v015n04ABEH006969
Koronkevich V.P., Poleshchuk A.G., Churin E.G., et al. Laser thermochemical technology for the synthesis of diffractive optical elements on chromium films [in Russian] // Quant. Electron. 1985. V. 12. № 4. P. 755–761. https://doi.org/10.1070/QE1985v015n04ABEH006969
8. Корольков В.П., Насыров Р.К., Седухин А.Г. и др. Новые методы изготовления высокоапертурных компьютерно-синтезированных голограмм для формирования эталонных волновых фронтов в интерферометрии // Автометрия. 2020. Т. 56. № 2. С. 42–54. http://doi.org/10.15372/AUT20200204
Korolkov V.P., Nasyrov R.K., Sedukhin A.G., et al. New methods of manufacturing high-aperture computer-synthesized holograms for the formation of reference wavefronts in interferometry // Optoelectron. Instrum. Proc. 2020. V. 56. P. 140–149. http://doi.org/10.3103/S8756699020020119
9. Veiko V.P., Poleshchuk A.G. Laser-induced local oxidation of thin metal films: Physical fundamentals and applications // Fundamentals of Laser-Assisted Microand Nanotechnologies / Eds. Veiko V.P., Konov V.I. Cham: Springer, 2014. P. 149–171. http://doi.org/10.1007/978-3-319-05987-7
10. Bialuschewski D. Laser-assisted modification of metals and metal oxide semiconductors as photoactive materials. München: Dr. Hut Verlag, 2020. 127 p.
11. Шахно Е.А., Синев Д.А., Кулажкин А.М. Особенности лазерного окисления тонких пленок титана // Оптический журнал. 2014. Т. 81. № 5. С. 93–98.
Shakhno E.A., Sinev D.A., Kulazhkin A.M. Features of laser oxidation of thin films of titanium // J. Opt. Technol. 2014. V. 81. № 5. P. 298–302. http://doi.org/10.1364/JOT.81.000298
12. Xia F., Jiao L., Wu D., et al. Mechanism of pulsedlaser-induced oxidation of titanium films // Opt. Mater. Exp. 2019. V. 9. № 10. P. 4097–4103. http://doi.org/10.1364/OME.9.004097
13. Korolkov V.P., Sedukhin A.G., Belousov D.A., et al. Increasing the spatial resolution of direct laser writing of diffractive structures on thin films of titanium group metals // Proc. SPIE. 2019. V. 11030. P. 110300A. http://doi.org/10.1117/12.2520978
14. Куц Р.И., Корольков В.П., Микерин С.Л. и др. Объемная термохимическая лазерная запись наноструктурированных отражающих дифракционных решеток на двухслойном материале Zr/SiO2 // Оптический журнал. 2023. Т. 90. № 4. С. 5–17. http://doi.org/10.17586/1023-5086-2023-90-04-05-17
Kuts R., Korolkov V., Mikerin S., et al. Volumetric thermochemical laser writing of nanostructured reflective diffraction gratings on a dual-layer Zr/SiO2 material // J. Opt. Technol. 2023. V. 90. № 4. P. 163–169. http://doi.org/10.1364/JOT.90.000163
15. Belousov D.A., Kuts R.I., Okotrub K.A., et al. Direct laser writing of diffractive structures on bi-layer Si/Ti films coated on fused silica substrates // Photonics. 2023. V. 10. № 7. P. 771. http://doi.org/10.3390/ photonics10070771
16. Nava F., Majni G., Luches A., et al. Laser and electronbeam induced formation of metal-silicides // J. Phys., Colloq. 1980. V. 41. № C4. P. C4-97–C4-100. https://doi.org/10.1051/jphyscol:1980417
17. D'Anna E., Drigo A.V., Leggieri G., et al. Synthesis of chromium silicide with laser pulses // Appl. Phys. A. 1990. V. 50. P. 411–415. https://doi.org/10.1007/BF00323599
18. Belousov D.A., Kuts R.I., Korolkov V.P. Thermochemical laser writing of silicide masks on dual-layer films a-Si/Cr // Proc. SPIE. 2023. V. 12762. P. 127620W. http://doi.org/10.1117/12.2687545io
19. Korolkov V.P., Kuts R.I., Malyshev A.I., et al. Dry method for the formation of reflective phase DOEs using direct laser writing on thin Zr films // Proc. SPIE. 2020. V. 11551. P. 211–217. http://doi.org/10.1117/12.2574196
20. Poleshchuk A.G., Churin E.G., Koronkevich V.P., et al. Polar coordinate laser pattern generator for fabrication of diffractive optical elements with arbitrary structure // Appl. Opt. 1999. V. 38. № 8. P. 1295–1301. http://doi.org/10.1364/AO.38.001295