ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2025-92-05-50-56

УДК: 535.37

Assessment of the effect of a constant magnetic field on the luminescence of gallium phosphide crystals

For Russian citation (Opticheskii Zhurnal):

Скворцова А.А., Волкова Л.В., Каленков С.Г., Скворцов А.А. Оценка влияния постоянного магнитного поля на люминесценцию кристаллов фосфида галлия // Оптический журнал. 2025. Т. 92. № 5. С. 50–56. http://doi.org/10.17586/1023-5086-2025-92-05-50-56

 Skvortsova A.A., Volkova L.V., Kalenkov S.G., Skvortsov A.A. Assessment of the effect of a constant magnetic field on the luminescence of gallium phosphide crystals [in Russian] // Opticheskii Zhurnal. 2025. V. 92. № 5. P. 50–56. http://doi.org/10.17586/1023-5086-2025-92-05-50-56

For citation (Journal of Optical Technology):

Anna A. Skvortsova, Larisa V. Volkova, Sergey G. Kalenkov, and Arkadiy A. Skvortsov, "Effect of a constant magnetic field on the luminescence of gallium phosphide crystals," Journal of Optical Technology. 92(5), 310-313 (2025).  https://doi.org/10.1364/JOT.92.000310  

Abstract:

The subject of the study. Magnetically stimulated photoluminescence of single crystals of gallium phosphide doped with zinc. The purpose of the work. Determination of the dependence of the luminescence intensity of gallium phosphide single crystals, as well as determination of the characteristic relaxation times after preliminary exposure of samples in a permanent magnetic field to solve the problem of magnetically stimulated control of the gallium phosphide single crystals optical properties. Method. Experimental studies of the luminescence spectra of gallium phosphide at room temperature were performed using an experimental setup containing a spectrophotometer and an exciting laser with a wavelength of 405 nm. The magnetic exposure of the samples was carried out in a constant magnetic field between the poles of neodymium magnets with а magnetic induction of less than 0,8 T. The main results. The effect of a constant magnetic field on the luminescence spectra of gallium phosphide crystals has been experimentally established. Preliminary exposure of a sample of gallium phosphide doped with zinc in a constant magnetic field (greater than 0,5 T) leads to an increase in the luminescence intensity at a wavelength of 565 nm. The relaxation of the maximum intensity of the fluorescence band is 180 minutes. Practical significance. The results obtained in the study of the effect of a permanent mag netic field on the spectral characteristics of gallium phosphide crystals will contribute to the deve lopment of effective methods for modifying the electronic properties of a gallium phosphide monolayer, which will allow the creation of new multifunctional materials for optoelectronic applications.

Keywords:

gallium phosphide, permanent magnetic field, luminescence, relaxation, singlet and triplet states, intercombination conversion

Acknowledgements:

 the work was supported within the framework of the state assignment of the Ministry of Education and Science of the Russian Federation (project №  FZRR-2023-0009) for the Moscow Polytechnic University

OCIS codes: 160.4760, 160.2540, 260.3800

References:
  1. E. da Silva Barboza, K. L. M. Cruz, R. S. Ferreira, et al., “Stability and Optoelectronic Properties of Two-Dimensional Gallium Phosphide,” ACS OMEGA 9(33), 35666–35675 (2024).
    [Crossref]
  2. Y. Choi, C. Choi, J. Bae, et al., “Synthesis of gallium phosphide quantum dots with high photoluminescence quantum yield and their application as color converters for LEDs,” J. Industrial and Eng. Chem. 123, 509–516 (2023).
    [Crossref]
  3. A. R. Aparna, V. Brahmajirao, and T. V. Karthikeyan, “Review on Synthesis and Characterization of Gallium Phosphide,” Procedia Mater. Sci. 6, 1650–1657 (2014).
    [Crossref]
  4. L. N. Dvoretckaia, V. V. Fedorov, A. Pavlov, et al., “Selective area epitaxy of gallium phosphide-based nanostructures on microsphere lithography-patterned Si wafers for visible light optoelectronics,” Mater. Res. Bull. 182, 113126 (2025).
    [Crossref]
  5. A. Assali, F. Kanouni, Q. Zou, et al., “Optical characteristics of dilute gallium phosphide bismide: Promising material for near-infra photonic device applications,” Phys. Lett. A 384(6), 126147 (2020).
    [Crossref]
  6. P. Xue, Y. Wang, and E. Tikhonov, “Exploring the stable structures and photovoltaic properties of an ideal pseudo-binary alloy: Indium gallium phosphide,” Comp. Mater. Sci. 209, 111351 (2022).
    [Crossref]
  7. R. Belacel, L. Djoudi, M. Merabet, et al., “Investigation on structural, electronic, optical and elastic properties of thallium phosphide and gallium phosphide binary compounds and their ternary alloys and superlattices,” Computational Condensed Matter 17, e00344 (2018).
    [Crossref]
  8. T. V. Vu, J. Guerrero-Sanchez, and D. M. Hoat, “Engineering the half-metallic and magnetic semiconductor natures in gallium phosphide monolayer towards spintronic applications,” Chem. Phys. 582, 112297 (2024).
    [Crossref]
  9. V. I. Alshits, E. V. Darinskaya, M. V. Koldaeva, et al., “Dislocation kinetics in nonmagnetic crystals: a look through a magnetic window,” Phys. Usp. 60(3), 305–318 (2017).
    [Crossref]
  10. R. B. Morgunov, “Spin micromechanics in the physics of plasticity,” Phys. Usp. 47(2), 125–147 (2004).
    [Crossref]
  11. Y. I. Golovin, “Magnetoplastic effects in solids,” Phys. Solid State 46(5), 789–824 (2004).
    [Crossref]
  12. Y. I. Golovin, R. B. Morgunov, A. A. Baskakov, et al., “Effect of a magnetic field on the electroluminescence intensity of single-crystal ZnS,” Phys. Solid State 41(11), 1783–1785 (1999).
    [Crossref]
  13. S. Pyshkin, J. Ballato, M. Bass, et al., “Luminescence of Long-Term Ordered Pure and Doped Gallium Phosphide,” J. Electron. Mater. 37, 388–395 (2008).
    [Crossref]
  14. L. V. Volkova, S. G. Kalenkov, A. A. Skvortsova, et al., “The effect of an external magnetic field on the luminescence of gallium phosphide crystals,” Tech. Phys. Lett., in press (2025).
  15. A. É. Yunovich, “Nitrogen divacancies—The possible cause of the ‘yellow band’ in the luminescence spectra of GaN,” Semiconductors 32(10), 1054–1056 (1998).
    [Crossref]
  16. Y. Shirasaki, G. J. Supran, M. G. Bawendi, et al., “Emergence of colloidal quantum-dot light-emitting technologies,” Nature Photon. 7, 13–23 (2013).
    [Crossref]