ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2025-92-05-89-98

УДК: 535.42, 004.942

Numerical analysis of intensity distribution along the optical axis for non-paraxial diffractive lenses

For Russian citation (Opticheskii Zhurnal):

Дюкарева О.А., Устинов А.В. Численный анализ распределения интенсивности вдоль оптической оси непараксиальных дифракционных линз // Оптический журнал. 2025. Т. 92. № 5. С. 89–98. http://doi.org/10.17586/1023-5086-2025-92-05-89-98

Dyukareva O.A., Ustinov A.V. Numerical analysis of intensity distribution along the optical axis for non-paraxial diffractive lenses [in Russian] // Opticheskii Zhurnal. 2025. V. 92. № 5. P. 89–98. http://doi.org/10.17586/1023-5086-2025-92-05-89-98

For citation (Journal of Optical Technology):

Olga A. Dyukareva and Andrey V. Ustinov, "Numerical analysis of intensity distribution along the optical axis in non-paraxial diffractive lenses," Journal of Optical Technology. 92(5), 333-339 (2025). https://doi.org/10.1364/JOT.92.000333

Abstract:

Subject of study. Longitudinal and transverse distributions of beam intensity during diffraction of laser radiation on parabolic, spherical diffractive lenses, axicons. Aim of study. Сlarification of the influence of input lens parameters in the non-paraxial region on the formed intensity distribution for generating a beam with specified properties for various types of polarization. Method. Numerical analysis of Fresnel and the first-kind Rayleigh–Sommerfeld integrals using quadrature formulas with the use of parallel computing on a graphics device. Main results. Depending on the numerical aperture, the profile of diffractive non-paraxial lenses can be close to the profile of an axicon or parabolic lens with the corresponding focal length and ensuring the formation of an intensity peak. Homogeneous types of polarization allow the formation of an axial maximum of intensity due to the x- and y-components of the electric field; with radial polarization, it is ensured by the dominant influence of the longitudinal component. For azimuthal polarization, it is possible to form an axial focus due to transverse components when introducing a vortex phase into the input field. Practical significance. The obtained results can be useful for calculating optical elements that provide variations in the polarization and phase characteristics of the electromagnetic field, which expands the means of influencing laser radiation on matter and controlling laser processing and structuring of materials.

Keywords:

non-paraxial lens, parabolic lens, axicon, Rayleigh–Sommerfeld diffraction integral, polarization

Acknowledgements:

 this work was supported by the Russian Science Foundation (project № 22-79-10007) in terms of numerical modeling, and the State Assignment of the National Research Center "Kurchatov Institute" in the theoretical part

OCIS codes: 050.1970, 260.1960

References:
  1. H. P. Herzig, Micro-optics: Elements, Systems and Applications (CRC Press, 1997).
    [Crossref]
  2. H. Zappe, “Micro-optics: A micro-tutorial,” Adv. Opt. Technol. 1(3), 117–126 (2012).
    [Crossref]
  3. Q. Zhang, Z. He, Z. Xie, et al., “Diffractive optical elements 75 years on: From micro-optics to metasurfaces,” Photon. Insights 2 (4), R09 (2023).
    [Crossref]
  4. S. N. Khonina, N. L. Kazanskiy, and M. A. Butt, “Exploring diffractive optical elements and their potential in free space optics and imaging—A comprehensive review,” Laser Photon. Rev. 18(12), 2400377 (2024).
    [Crossref]
  5. S. N. Khonina, N. L. Kazanskiy, R. V. Skidanov, et al., “Advancements and applications of diffractive optical elements in contemporary optics: A comprehensive overview,” Adv. Mater. Technol. 10(4), 2401028 (2024).
    [Crossref]
  6. D. Gao, W. Ding, M. Nieto-Vesperinas, et al., “Optical manipulation from the microscale to the nanoscale: Fundamentals, advances and prospects,” Light: Sci. Appl. 6(9), e17039 (2017).
    [Crossref]
  7. S. L. Oscurato, F. Reda, M. Salvatore, et al., “Shape-shifting diffractive optical devices,” Laser Photonics Rev. 16(4), 2100514 (2022).
    [Crossref]
  8. A. Porfirev, S. Khonina, and A. Kuchmizhak, “Light-matter interaction empowered by orbital angular momentum: Control of matter at the micro- and nanoscale,” Prog. Quantum Electron. 88, 100459 (2023).
    [Crossref]
  9. R. V. Skidanov, S. N. Khonina, and A. A. Morozov, “Optical rotation of microparticles in hypergeometric beams formed by diffraction optical elements with multilevel microrelief,” J. Opt. Technol. 80(10), 585–589 (2013) [Opt. Zh. 80(10), 3–8 (2013)].
    [Crossref]
  10. A. P. Porfiriev and R. V. Skidanov, “Optical trapping and manipulation of light-absorbing particles by means of a Hermite–Gaussian laser beam,” J. Opt. Technol. 82(9), 587–591 (2015) [Opt. Zh. 82(9), 16–21 (2015)].
    [Crossref]
  11. W. F. Balthazar and J. A. O. Huguenin, “Conditional operation using three degrees of freedom of a laser beam for application in quantum information,” J. Opt. Soc. Am. B 33(8), 1649–1654 (2016).
    [Crossref]
  12. J. Wang, “Twisted optical communications using orbital angular momentum,” Sci. China Phys. Mech. Astron. 62(3), 342011 (2019).
    [Crossref]
  13. A. Häusler and M. Hummel, “Extending the degrees of freedom in laser beam microwelding,” Photonics Views 19(2), 87–89 (2022).
    [Crossref]
  14. Y. Fazea and V. Mezhuyev, “Selective mode excitation techniques for mode-division multiplexing: A critical review,” Opt. Fiber Technol. 45, 280–288 (2018).
    [Crossref]
  15. W. F. Jiang, J. Y. Miao, and T. Li, “Compact silicon 10-mode multi/demultiplexer for hybrid mode- and polarisation-division multiplexing system,” Sci. Rep. 9, 13223 (2019).
    [Crossref]
  16. N. L. Kazanskiy, S. N. Khonina, S. V. Karpeev, et al., “Diffractive optical elements for multiplexing structured laser beams,” Quantum Electron. 50(7), 629–635 (2020).
    [Crossref]
  17. S. N. Khonina, V. V. Kotlyar, and V. A. Soifer, “Fast Hankel transform for focusator synthesis,” Optik 88(4), 182–184 (1991).
  18. D. W. Zhang, X.-C. Yuan, N. Q. Ngo, et al., “Fast Hankel transform and its application for studying the propagation of cylindrical electromagnetic fields,” Opt. Express 10(12), 521–525 (2002).
    [Crossref]
  19. J. A. C. Veerman, J. J. Rusch, and P. H. Urbach, “Calculation of the Rayleigh–Sommerfeld diffraction integral by exact integration of the fast oscillating factor,” J. Opt. Soc. Am. A 22(4), 636–646 (2005).
    [Crossref]
  20. S. N. Khonina, A. V. Ustinov, A. A. Kovalyov, et al., “Near-field propagation of vortex beams: Models and computation algorithms,” Opt. Mem. Neural Networks 23(2), 50–73 (2014).
    [Crossref]
  21. S. N. Khonina, A. V. Ustinov, R. V. Skidanov, et al., “Comparative study of spectral properties of aspherical lenses,” Komp’yuternaya Optika 39(3), 363–369 (2015).
    [Crossref]
  22. L. Rao, J. Pu, Z. Chen, et al., “Focus shaping of cylindrically polarized vortex beams by a high numerical-aperture lens,” Opt. Laser Technol. 41(3), 241–246 (2009).
    [Crossref]
  23. S. N. Khonina, “Vortex beams with high-order cylindrical polarization: Features of focal distributions,” Appl. Phys. B 125, 100 (2019).
    [Crossref]