DOI: 10.17586/1023-5086-2025-92-05-99-109
УДК: 535.3
Potential of “AgInS2 quantum dots/albumin nanoparticles” system for photodynamic therapy
Full text on elibrary.ru
Горбачева В.И., Резник И.А., Колесова Е.П. Потенциал системы «квантовые точки AgInS2/альбуминовые наночастицы» для фотодинамической терапии // Оптический журнал. 2025. Т. 92. № 5. С. 99–109. http://doi.org/10.17586/1023-5086-2025-92-05-99-109
Gorbacheva V.I., Reznik I.A., Kolesova E.P. Potential of “AgInS2 quantum dots/albumin” system for photodynamic therapy [in Russian] // Opticheskii Zhurnal. 2025. V. 92. № 5. P. 99–109. http://doi.org/10.17586/1023-5086-2025-92-05-99-109
Subject of study. Free and encapsulated in albumin nanoparticles quantum dots AgInS2 and AgInS2/ZnS. Aim of study. Determination and comparison of the fluorescence properties and the ability to generate reactive oxygen species of free quantum dots and quantum dots encapsulated in albumin nanoparticles for use as sensitizers for photodynamic therapy. Method. Quantum dots were synthesized by hydrothermal method, albumin nanoparticles by desolvation method, encapsulation of quantum dots into albumin nanoparticles was carried out by co-incubation in aqueous solution. Superoxide generation efficiency was estimated using selective chemical sensor. Main results. It was demonstrated that the growth of the ZnS shell on the AgInS2 quantum dots leads to an increase in both the fluorescence quantum yield and the efficiency of superoxide generation. The encapsulation efficiency of AgInS2 and AgInS2/ZnS quantum dots in albumin nanoparticles was 60 and 20%, respectively, which was accompanied by a hypsochromic shift in the fluorescence spectra of quantum dots. Encapsulation of quantum dots in albumin nanoparticles led to a decrease in the efficiency of superoxide generation compared to free quantum dots, which can be compensated for by their greater stability in biological systems. Practical significance. The obtained results of the study of the photophysical properties of AgInS2 quantum dots demonstrated the high potential of nanoplatforms based on quantum dots and albumin nanoparticles as sensitizers for photodynamic therapy.
quantum dots, albumin nanoparticles, photoluminescence, reactive oxygen species, photosensitize
Acknowledgements:this work was supported by the Russian Science Foundation, project № 24-24-20102
OCIS codes: 170.5180, 170.6280
References:1. Dougherty T.J., Gomer C.J., Henderson B.W., et al. Photodynamic therapy // J. Natl. Cancer Inst. 1998. V. 90. № 12. P. 889–905. https://doi.org/10.1093/jnci/90.12.889
2. Wieman T.J., Mang T.S., Fingar V.H., et al. Effect of photodynamic therapy on blood flow in normal and tumor vessels // Surgery. 1988. V. 104. № 3. P. 512–517.
3. Raab O. Uber die Wirkung fluoreszierender Stoffe auf infusorien [auf Deutsch] // Zeitschr Biol. 1900. Bd. 39. S. 524–546.
4. Dougherty T.J., Kaufman J.E., Goldfarb A., et al. Photoradiation therapy for the treatment of malignant tumors // Cancer Res. 1978. V. 38. № 8. P. 2628–2635.
5. Castano A.P., Demidova T.N., Hamblin M.R. Mechanisms in photodynamic therapy: Part 1 — photosensitizers, photochemistry and cellular localization // Photodiagnosis and Photodynamic Therapy. 2004. V. 1. № 4. P. 279–293. https://doi.org/10.1016/S1572-1000(05)00007-4
6. Santos K.L.M., Barros R.M., da Silva Lima D.P., et al. Prospective application of phthalocyanines in the photodynamic therapy against microorganisms and tumor cells: A mini-review // Photodiagnosis and Photodynamic Therapy. 2020. V. 32. P. 102032. https://doi.org/10.1016/j.pdpdt.2020.102032
7. Sobhanan J., Rival J.V., Anas A., et al. Luminescent quantum dots: Synthesis, optical properties, bioimaging and toxicity // Advanced Drug Delivery Rev. 2023. V. 197. P. 114830. https://doi.org/10.1016/j.addr.2023. 114830
8. Gidwani B., Sahu V., Shukla S.S., et al. Quantum dots: Prospectives, toxicity, advances and applications // J. Drug Delivery Sci. and Technol. 2021. V. 61. P. 102308. https://doi.org/10.1016/j.jddst.2020.102308
9. Nguyen K.C., Rippstein P., Tayabali A.F., et al. Mitochondrial toxicity of cadmium telluride quantum dot nanoparticles in mammalian hepatocytes // Toxicological Sci. 2015. V. 146. № 1. P. 31–42. https://doi.org/10.1093/toxsci/kfv068
10. Tan L., Liu S., Li X., et al. A new strategy for synthesizing AgInS2 quantum dots emitting brightly in nearinfrared window for in vivo imaging // Colloids and Surfaces B: Biointerfaces. 2015. V. 125. P. 222–229. https://doi.org/10.1016/j.colsurfb.2014.11.041
11. Ponomaryova T.S., Olomskaya V.V., Abalymov A.A., et al. Visualization of 2D and 3D tissue models via sizeselected aqueous AgInS/ZnS quantum dots // ACS Appl. Mater. & Interfaces. 2024. V. 16. № 31. P. 40483–40498. https://doi.org/10.1021/acsami.4c05681
12. Баранов К.Н., Колесова Е.П., Баранов М.А. и др. Генерация активных форм кислорода нанокомпозитами AgInS2/TiO2 под действием излучения УФ и видимого диапазона // Опт. и спектроск. 2022. Т. 130. № 8. С. 1268–1275. https://doi.org/10.21883/OS.2022. 08.52914.3746-22
Baranov K.N., Kolesova E.P., Baranov M.A., et al. Generation of reactive oxygen species by AgInS2/TiO2 nanocomposites upon exposure to uv and visible radiation // Opt. and Spectrosc. 2022. V. 130. № 5. P. 336–343. https://doi.org/10.1134/S0030400X22060017
13. Hoshyar N., Gray S., Han H., et al. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction // Nanomedicine. 2016. V. 11. № 6. P. 673–692. https://doi.org/10.2217/nnm.16.5
14. Parodi A., Miao J., Soond S.M., et al. Albumin nanovectors in cancer therapy and imaging // Biomolecules. 2019. V. 9. № 6. P. 218. https://doi.org/10.3390/biom9060218
15. Ji Q., Zhu H., Qin Y., et al. GP60 and SPARC as albumin receptors: Key targeted sites for the delivery of antitumor drugs // Frontiers in Pharmacology. 2024. V. 15. P. 1329636. https://doi.org/10.3389/fphar.2024. 1329636
16. Raevskaya A., Lesnyak V., Haubold D., et al. A fine size selection of brightly luminescent water-soluble Ag–In–S and Ag–In–S/ZnS quantum dots // J. Phys. Chem. C. 2017. V. 121. № 16. P. 9032–9042. https://doi.org/10.1021/acs.jpcc.7b00849
17. Kolesova E.P., Egorova V.S., Syrocheva A.O., et al. Proteolytic resistance determines albumin nanoparticle drug delivery properties and increases cathepsin B, D, and G expression // Intern. J. Molecular Sci. 2023. V. 24. № 12. P. 10245. https://doi.org/10.3390/ijms241210245
18. Kraljić I., Trumbore C.N. p-Nitrosodimethylaniline as an OH radical scavenger in radiation chemistry1 // J. American Chem. Soc. 1965. V. 87. № 12. P. 2547–2550. https://doi.org/10.1021/ja01090a004
19. Chevallier T., Benayad A., Le Blevennec G., et al. Method to determine radiative and non-radiative defects applied to AgInS2-ZnS luminescent nanocrystals // Physical Chemistry Chemical Phys. 2017. V. 19. № 3. P. 2359–2363. https://doi.org/10.1039/C6CP06509K
20. Rivaux C., Akdas T., Yadav R., et al. Continuous flow aqueous synthesis of highly luminescent AgInS2 and AgInS2/ZnS quantum dots // J. Phys. Chem. C. 2022. V. 126. № 48. P. 20524–20534. https://doi.org/10.1021/ acs.jpcc.2c06849