ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2025-92-05-99-109

УДК: 535.3

Potential of “AgInS2 quantum dots/albumin nanoparticles” system for photodynamic therapy

For Russian citation (Opticheskii Zhurnal):

Горбачева В.И., Резник И.А., Колесова Е.П. Потенциал системы «квантовые точки AgInS2/альбуминовые наночастицы» для фотодинамической терапии // Оптический журнал. 2025. Т. 92. № 5. С. 99–109. http://doi.org/10.17586/1023-5086-2025-92-05-99-109

Gorbacheva V.I., Reznik I.A., Kolesova E.P. Potential of “AgInS2 quantum dots/albumin” system for photodynamic therapy [in Russian] // Opticheskii Zhurnal. 2025. V. 92. № 5. P. 99–109. http://doi.org/10.17586/1023-5086-2025-92-05-99-109

For citation (Journal of Optical Technology):
Valentina I. Gorbacheva, Ivan A. Reznik, and Ekaterina P. Kolesova, "Potential of an AgInS2 quantum dot/albumin nanoparticle system for photodynamic therapy," Journal of Optical Technology. 92(5), 340-346 (2025).  https://doi.org/10.1364/JOT.92.000340
Abstract:

Subject of study. Free and encapsulated in albumin nanoparticles quantum dots AgInS2 and AgInS2/ZnS. Aim of study. Determination and comparison of the fluorescence properties and the ability to generate reactive oxygen species of free quantum dots and quantum dots encapsulated in albumin nanoparticles for use as sensitizers for photodynamic therapy. Method. Quantum dots were synthesized by hydrothermal method, albumin nanoparticles by desolvation method, encapsulation of quantum dots into albumin nanoparticles was carried out by co-incubation in aqueous solution. Superoxide generation efficiency was estimated using selective chemical sensor. Main results. It was demonstrated that the growth of the ZnS shell on the AgInS2 quantum dots leads to an increase in both the fluorescence quantum yield and the efficiency of superoxide generation. The encapsulation efficiency of AgInS2 and AgInS2/ZnS quantum dots in albumin nanoparticles was 60 and 20%, respectively, which was accompanied by a hypsochromic shift in the fluorescence spectra of quantum dots. Encapsulation of quantum dots in albumin nanoparticles led to a decrease in the efficiency of superoxide generation compared to free quantum dots, which can be compensated for by their greater stability in biological systems. Practical significance. The obtained results of the study of the photophysical properties of AgInS2 quantum dots demonstrated the high potential of nanoplatforms based on quantum dots and albumin nanoparticles as sensitizers for photodynamic therapy.

Keywords:

quantum dots, albumin nanoparticles, photoluminescence, reactive oxygen species, photosensitize

Acknowledgements:

this work was supported by the Russian Science Foundation, project № 24-24-20102

OCIS codes: 170.5180, 170.6280

References:
  1. T. J. Dougherty, C. J. Gomer, B. W. Henderson, et al., “Photodynamic therapy,” J. Natl. Cancer Inst. 90(12), 889–905 (1998).
    [Crossref]
  2. T. J. Wieman, T. S. Mang, V. H. Fingar, et al., “Effect of photodynamic therapy on blood flow in normal and tumor vessels,” Surgery 104(3), 512–517 (1988).
  3. O. Raab, “Über die Wirkung fluoreszierender Stoffe auf Infusorien,” Zeitschr Biol. 39, 524–546 (1900).
  4. T. J. Dougherty, J. E. Kaufman, A. Goldfarb, et al., “Photoradiation therapy for the treatment of malignant tumors,” Cancer Res. 38(8), 2628–2635 (1978).
  5. A. P. Castano, T. N. Demidova, and M. R. Hamblin, “Mechanisms in photodynamic therapy: Part 1—photosensitizers, photochemistry and cellular localization,” Photodiagn. Photodyn. Ther. 1(4), 279–293 (2004).
    [Crossref]
  6. K. L. M. Santos, R. M. Barros, D. P. da Silva Lima, et al., “Prospective application of phthalocyanines in the photodynamic therapy against microorganisms and tumor cells: A mini-review,” Photodiagn. Photodyn. Ther. 32, 102032 (2020).
    [Crossref]
  7. J. Sobhanan, J. V. Rival, A. Anas, et al., “Luminescent quantum dots: Synthesis, optical properties, bioimaging and toxicity,” Adv. Drug Delivery Rev. 197, 114830 (2023).
    [Crossref]
  8. B. Gidwani, V. Sahu, S. S. Shukla, et al., “Quantum dots: Prospectives, toxicity, advances and applications,” J. Drug Delivery Sci. Technol. 61, 102308 (2021).
    [Crossref]
  9. K. C. Nguyen, P. Rippstein, A. F. Tayabali, et al., “Mitochondrial toxicity of cadmium telluride quantum dot nanoparticles in mammalian hepatocytes,” Toxicol. Sci. 146(1), 31–42 (2015).
    [Crossref]
  10. L. Tan, S. Liu, X. Li, et al., “A new strategy for synthesizing AgInS2 quantum dots emitting brightly in near-infrared window for in vivo imaging,” Colloids Surf. B 125, 222–229 (2015).
    [Crossref]
  11. T. S. Ponomaryova, V. V. Olomskaya, A. A. Abalymov, et al., “Visualization of 2D and 3D tissue models via size-selected aqueous AgInS/ZnS quantum dots,” ACS Appl. Mater. Interfaces 16(31), 40483–40498 (2024).
    [Crossref]
  12. K. N. Baranov, E. P. Kolesova, M. A. Baranov, et al., “Generation of reactive oxygen species by AgInS2/TiO2 nanocomposites upon exposure to UV and visible radiation,” Opt. Spectrosc., 336–343 (2022) [Opt. Spektrosk. 130(8), 1268–1275 (2022)].
    [Crossref]
  13. N. Hoshyar, S. Gray, H. Han, et al., “The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction,” Nanomedicine 11(6), 673–692 (2016).
    [Crossref]
  14. A. Parodi, J. Miao, S. M. Soond, et al., “Albumin nanovectors in cancer therapy and imaging,” Biomolecules 9(6), 218 (2019).
    [Crossref]
  15. Q. Ji, H. Zhu, Y. Qin, et al., “GP60 and SPARC as albumin receptors: Key targeted sites for the delivery of antitumor drugs,” Front. Pharmacol. 15, 1329636 (2024).
    [Crossref]
  16. A. Raevskaya, V. Lesnyak, D. Haubold, et al., “A fine size selection of brightly luminescent water-soluble Ag–In–S and Ag–In–S/ZnS quantum dots,” J. Phys. Chem. C 121(16), 9032–9042 (2017).
    [Crossref]
  17. E. P. Kolesova, V. S. Egorova, A. O. Syrocheva, et al., “Proteolytic resistance determines albumin nanoparticle drug delivery properties and increases cathepsin B, D, and G expression,” Int. J. Mol. Sci. 24(12), 10245 (2023).
    [Crossref]
  18. I. Kraljić and C. N. Trumbore, “p-Nitrosodimethylaniline as an OH radical scavenger in radiation chemistry,” J. Am. Chem. Soc. 87(12), 2547–2550 (1965).
    [Crossref]
  19. T. Chevallier, A. Benayad, G. Le Blevennec, et al., “Method to determine radiative and non-radiative defects applied to AgInS2-ZnS luminescent nanocrystals,” Phys. Chem. Chem. Phys. 19(3), 2359–2363 (2017).
    [Crossref]
  20. C. Rivaux, T. Akdas, R. Yadav, et al., “Continuous flow aqueous synthesis of highly luminescent AgInS2 and AgInS2/ZnS quantum dots,” J. Phys. Chem. C 126(48), 20524–20534 (2022).
    [Crossref]