DOI: 10.17586/1023-5086-2025-92-06-14-22
УДК: 535.37+621.371.378
Diode pumped Nd:YAG laser with unstable self-filtering cavity for operation within wide range of pulse repetition rate
Full text on elibrary.ru
Богданович М.В., Григорьев А.В., Дудиков В.Н., Рябцев А.Г., Рябцев Г.И., Татура П.О. Диоднонакачиваемый Nd:YAG лазер с неустойчивым самофильтрующимся резонатором для работы в широком интервале частот следования импульсов генерации // Оптический журнал. 2025. Т. 92. № 6. С. 14–22. http://doi.org/10.17586/1023-5086-2025-92-06-14-22
Bogdanovich M.V., Grigor’ev A.V., Dudikov V.N., Ryabtsev A.G., Ryabtsev G.I., Tatura P.O. Diode pumped Nd:YAG laser with unstable self-filtering cavity for operation within wide range of pulse repetition rate [in Russian] // Opticheskii Zhurnal. 2025. V. 92. № 6. P. 14–22. http://doi.org/10.17586/1023-5086-2025-92-06-14-22
Subject of study. Spatial and power characteristics of the diode-pumped Nd:YAG laser with the unstable self-filtering cavity emitting the polarized radiation at the main TEM00 mode with the pulse repetition rate within the range of 1–30 Hz without changing the cavity parameters or cavity geometry. Aim of study. Optimization of Nd:YAG laser optical scheme with the unstable self-filtering cavity providing the Q-switch lasing at the main TEM00 mode with the pulse output energy in excess of 50 mJ during the rearrangement of the pulse repetition rate within the range of 1–30 Hz. Method. Calculation of optical scheme for the unstable self-filtering cavity taking into account the thermal lens arising in the active element under influence of pump radiation. Experimental investigations of spatial and power characteristics of the diode-pumped Nd:YAG laser with the unstable self-filtering cavity in a condition of changing the cavity length, the curvature radius of the compensating totally reflecting mirror and the pulse repetition rate from 1 to 30 Hz under fixed pump level. Main results. It is shown that the developed Nd:YAG laser optical scheme allows forming the lasing pulses in the main TEM00 mode with the energies in excess of 50 mJ without changing the cavity parameters or geometry. Maximum energy for the output pulses with minimal beam quality values at the same time are achieved using the compensating totally reflecting mirror with the curvature radius of 1000 mm and the cavity magnification factor of 4. Practical significance. The data obtained can be used in the development of high-power pulsed side diode-pumped Nd:YAG lasers characterized by high output beam quality. The main peculiarity of these lasers is possibility of operation in the Q-switch main TEM00 mode regime without application of any additional alignment procedures and/or introduction of compensator elements in the case of need in the change of the pulse repetition rate value. The developed approach, in a comparison to traditional methods of obtaining powerful radiation in the main TEM00 mode, allows reducing the radiation load on the intracavity elements, which, all other things being equal, leads to an increase in the reliability/life time of the laser emitter.
solid-state laser, Nd:YAG, transversal diode pump, unstable cavity, thermal lens, lasing pulse repetition rate
Acknowledgements:the study was financially supported by the Belarus State Program of the Basic Research «Photonics and Electronics for Innovations», Project 1.4.
OCIS codes: 140.3480, 140.3540, 140.3580, 140.3430
References:1. Рябцев Г.И., Богданович М.В., Григорьев А.В., Дудиков В.Н., Лепченков К.В., Рябцев А.Г., Шпак П.В., Щемелев М.А. Термооптические характеристики диодно-накачиваемых Nd:YAG лазеров с керамическими и кристаллическими активными элементами // Оптический журнал. 2020. Т. 87. № 2. C. 50–55. https://doi.org/10.17586/1023-5086-2020-87-02-50-55
Ryabtsev G.I., Bogdanovich M.V., Grigor’ev A.V., Dudikov V.N., Lepchenkov K.V., Ryabtsev A.G., Shpak P.V., Shchemelev M.A. Thermo-optic properties of diode-pumped Nd:YAG lasers with ceramic and crystalline active elements // Journal of Optical Technology. 2020. V. 87. № 2. P. 105–109. https://doi.org/10.1364/JOT.87.000105
2. Bogdanovich M., Grigor’ev A., Dudikov V., Kot A., Ryabtsev A., Ryabtsev G., Shpak P., Shchemelev M. Pulsed high-repetition rate diode-pumped Nd:YAG laser source with advanced Q-switch modulator // Results in Optics. 2021. V. 3. P. 100077. https://doi.org/10.1016/j.rio.2021.100077
3. Hanna D.C., Sawyers C.G., Yuratich M.A. Telescopic resonators for large-volume TEM00-mode operation // Optical and Quantum Electronics. 1981. V. 13. № 6. P. 493 –507. https://doi.org/10.1007/BF00668347
4. Hanna D.C., Sawyers C.G., Yuratich M.A. Large volume TEM00 mode operation of Nd:YAG lasers // Optics Communications. 1981. V. 37. № 5. P. 359 –362. https://doi.org/10.1016/0030-4018(81)90436-3
5. Gobbi P.G., Reali G. Stable telescopic resonators, unstable resonators and new cavity designs applied to high energy laser engineering // Proc. of SPIE. 1984. V. 492 (ECOOSA’84/Amsterdam 1984). P. 68–78. http://spiedigitallibrary.org/ss/TermsOfUse.aspx
6. Богданович М.В., Григорьев А.В., Дудиков В.Н., Рябцев А.Г., Рябцев Г.И., Татура П.О., Шпак П.В., Щемелев М.А. Термонаведенное двулучепреломление и модовая селекция в резонаторе Nd:YAG лазера с пассивной модуляцией добротности // Журнал прикладной спектроскопии. 2022. Т. 89. № 5. С. 621–625. https://doi.org/10.47612/0514-7506-2022-89-5-621-625
Bogdanovich M.V., Grigir’ev A.V., Dudikov V.N., Ryabtsev A.G., Ryabtsev G.I., Tatura P.O., Shpak P.V., Shchemelev M.A. Thermally induced birefringence and mode selection in cavity of a passively Q-switched diode-pumped Nd:YAG laser // Journal of Applied Spectroscopy. 2022. V. 89. 12 November. P. 835–838. https:// doi.org/10.1007/s10812-022-01433-2
7. Siegman A.E. Unstable optical resonators for laser applications // Proceedings of the IEEE. 1965. V. 53. P. 277–287. https://doi.org/10.1109/PROC.1965.3685
8. Ананьев Ю.А. Угловое расхождение излучения твердотельных лазеров // УФН. 1971. Т. 103. № 4. С. 705–738. https://doi.org/10.1070/PU1971v014n02ABEH004460
Anan’ev Yu.A. Angular divergence of radiation of solid-state lasers // Soviet Physics Uspekhi. 1971. V. 14. № 2. P. 197–230. https://doi.org/10.1070/PU1971v014n02ABEH004460
9. Herbst R.L., Komine H., Byer R.L. A 200 mJ unstable resonator Nd:YAG oscillator // Optics Communications. 1977. V. 21. P. 5–7. https://doi.org/10.1016/0030-4018(77)90063-3
10. Назаров В.В., Хлопонин Л.В., Храмов В.Ю. Мощный компактный Nd:YAG лазер // Оптический журнал. 2009. Т. 76. № 11. С. 22–26.
Nazarov V.V., Khloponin L.V., Khramov V.Yu. Powerful compact Nd:YAG laser // Journal of Optical Technology. 2009. V. 76. № 11. P. 689–692. https://doi.org/10.1364/JOT.76.000689
11. Zhang B., Wang P., Chen Y., Wang Y., Sang Y., Xu Zh., Liu W. Guo J. Experimental and theoretical analysis of passively Q-switched lasers with a high output coupling // Optics and Laser Technology. 2019. V. 119. P. 105645. https://doi.org/10.1016/j.optlastec.2019.105645
12. Gobbi P.G., Reali G.C. A novel unstable resonator configuration with a self filtering aperture // Optics Communications. 1984. V. 52. № 3. P. 195 –198. https://doi.org/10.1016/0030-4018(84)90357-2
13. Gobbi P.G., Morosi S., Reali G.C, Zarkasi A.S. Novel unstable resonator configuration with a self–filtering aperture: experimental characterization of the Nd:YAG loaded cavity // Appl. Optics. 1985. V. 24. № 1. P. 26–33. https://doi.org/10.1364/AO.24.000026
14. Тарасов Л.В. Физика лазеров. М.: Книжный дом «ЛИБРОКОМ», 2010. 456 с.
Tarasov L.V. Laser physics. M.: Knirznyi dom "LIBROCOM", 2010. 456 p.
15. Liu H., Zhou Sh.-H., Chen Y.C. High-power monolithic unstable-resonator solid-state laser // Optics Letters. 1998. V. 23. № 6. P. 451–453. https://doi.org/10.1364/OL.23.000451
16. Bezyazychnaya T.V., Bogdanovich M.V., Grigor'ev A.V., Kabanov V.V., Kostik O.E., Lebiadok Y.V., Lepchenkov K.V., Mashko V.V., Ryabtsev A.G., Ryabtsev G.I., Shchemelev M.A., Teplyashin L.L. Transversally diode-pumped Q-switched Nd:YAG laser with improved power and spatial characteristics // Optics Communications. 2013. V. 308. P. 26 –29. https://doi.org/10.1016/j.optcom.2013.06.024
17. Ахманов С.А., Никитин С.Ю. Физическая оптика. М.: Наука. 2004. 650 с.
Akhmanov S.A., Nikitin S.Yu. Physical optics. M.: Nauka, 2004. 650 p.
18. Kogelnik H., Li T. Laser beams and resonator // Appl. Optics. 1966. V. 5. № 10. P. 1550–1567. https://doi.org/10.1364/AO.5.001550
19. Звелто О. Принципы лазеров. М.: Мир, 1990. 558 с.
Svelto O. Principles of lasers. M.: Mir, 1990. 558 p.
20. Loiko P.A., Yumashev K.V., Kuleshov N.V., Savitski V.G., Calvez S., Burns D., Pavlyuk A.A. Thermal lens study in diode pumped Ng-Np-cut Nd:KGd(WO4)2 laser crystals // Optics Express. 2009. V. 17. № 26. P. 23536. https://doi.org/10.1364/OE.17.023536
21. Mirzaeian H., Manjooran S., Major A. A simple technique for accurate characterization of thermal lens in solid state lasers // Proc. of SPIE. 2014. V. 9288. P. 928802-1–P. 928802-7. http://doi.org/10.1117/12.2075117
ru