DOI: 10.17586/1023-5086-2025-92-07-3-12
УДК: 535.42
Modeling of the processes involved in the formation and propagation of optical vortex beams generated by microring resonators
Full text on elibrary.ru
Багманов В.Х., Бакирова Л.И., Воронков Г.С., Любопытов В.С. Моделирование процессов формирования и распространения оптических вихревых пучков, излучаемых микрокольцевыми резонаторами // Оптический журнал. 2025. Т. 92. № 7. С. 3–12. http://doi.org/10.17586/1023-5086-2025-92-07-3-12
Багманов В.Х., Бакирова Л.И., Воронков Г.С., Любопытов В.С. Моделирование процессов формирования и распространения оптических вихревых пучков, излучаемых микрокольцевыми резонаторами // Оптический журнал. 2025. Т. 92. № 7. С. 3–12. http://doi.org/10.17586/1023-5086-2025-92-07-3-12
Subject of study. Microring resonators with a radiation-emitting diffraction grating, formed by periodic holes on its surface. Aim of study. Developing mathematical models for the generation and radiation spatial distribution of the optical vortex beams carrying orbital angular momentum using microring resonators. Method. The process of optical beam radiation from a microring resonator is described using the general theory of electromagnetic wave scattering by dielectric inhomogeneities in the Rayleigh approximation. Optical vortex beam formation is considered in terms of the vector representation of electromagnetic fields, based on the Kirchhoff–Helmholtz integral theorem. Numerical simulations were performed in the Ansys Lumerical software environment. Main results. Analytical expressions have been derived that allow us to determine the spatial distribution of the electric field and the energy flux density, emitted by a microring resonator, depending on the configuration of the resonator and the parameters of the periodic holes on its surface, the region of maximum energy flux density, depending on the topological charge of the optical vortex beam produced by the resonator. To verify and confirm the accuracy of the second part of the mathematical model, additional numerical simulations were performed in the Ansys Lumerical environment. Practical significance. The findings of the study can be utilized to enhance the efficiency and optimize communication channels in the promising optical information technologies.
optical vortex beam, microring resonator, orbital angular momentum, diffraction
Acknowledgements:the research is supported by the Ministry of Science and Higher Education of the Russian Federation within the state assignment for UUST (agreement № 075-03-2024-123/1 dated 15.02.2024) and conducted in the research laboratory "Sensor systems based on integrated photonics devices" of the Eurasian Scientific and Educational Center
OCIS codes: 050.4865, 30.3120, 260.6042
References:1. Порфирьев А.П., Кучмижак А.А., Гурбатов С.О. и др. Фазовые сингулярности и оптические вихри в фотонике // УФН. 2022. Т. 192. № 08. С. 841–866. https://doi.org/10.3367/UFNr.2021.07.039028
Porfirev A.P., Kuchmizhak A.A., Gurbatov S.O., et al. Phase singularities and optical vortices in photonics // Phys. Usp. 2022. V. 65. № 8. P. 789–811. https://doi.org/10.3367/UFNr.2021.07.039028
2. Zhang H., Zeng J., Lu X., et al. Review on fractional vortex beam // Nanophotonics. 2022. V. 11. № 2. P. 241–273. https://doi.org/10.1515/nanoph-2021-0616
3. Shen Y., Wang X., Xie Z., et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities // Light: Sci. & Applications. 2019. V. 8. № 1. P. 90. https://doi.org/10.1038/s41377-019-0194-2
4. Головашкин Д.Л., Досколович Л.Л., Казанский Н.Л. и др. Дифракционная компьютерная оптика / Под ред. Сойфера В.А. М.: ФИЗМАТЛИТ, 2007. 736 с.
Golovashkin D.L., Doskolovich L.L., Kazansky N.L., et al. Diffraction computer optics [in Russian] / Ed. Soifer V.A. Moscow: FIZMATLIT Publ., 2007. 736 p.
5. Осинцева Н.Д., Герасимов В.В., Чопорова Ю.Ю. и др. Идентификация эрмит-гауссовых и бесселевых мод терагерцового пучка с помощью дифракционных оптических элементов // Оптический журнал. 2024. Т. 91. № 4. С. 3–15. https://orcid.org/10.17586/1023-5086-2024-91-04-3-15
Osintseva N.D., Gerasimov V.V., Choporova Yu.Yu., et al. Identification of Hermite–Gaussian and Bessel modes of terahertz beam with diffractive optical elements // J. Opt. Technol. 2024. V. 91. № 4. P. 215. https://doi.org/10.1364/JOT.91.000215
6. Хорин П.А., Хонина С.Н. Влияние отклонений 3D формы спиральной микроструктуры на свойства формируемого вихревого пучка в ближней зоне дифракции // Оптический журнал. 2023. Т. 90. № 5. С. 19–28. https://doi.org/10.17586/1023-5086-2023-90-05-19-28
Khorin P.A. and Khonina S.N. Influence of 3D helical microstructure shape deviations on the properties of a vortex beam generated in the near diffraction zone // J. Opt. Technol. 2023. V. 90. № 5. P. 236–241. https://doi.org/10.1364/JOT.90.000236
7. Kazanskiy N.L., Khonina S.N., Karpeev S.V., et al. Diffractive optical elements for multiplexing structured laser beams // Quant. Electron. 2020. V. 50. № 7. P. 629–635. https://doi.org/10.1070/QEL17276
8. Kotlyar V.V., Elfstrom H., Turunen J., et al. Generation of phase singularity through diffracting a plane or Gaussian beam by a spiral phase plate // JOSA. A. 2005. V. 22. № 5. P. 849. https://doi.org/10.1364/JOSAA.22.000849
9. Weng Y., Pan Z. Orbital angular momentum based sensing and their applications: A review // J. Lightwave Technol. 2022. P. 1–10. https://doi.org/10.1109/JLT.2022.3202184
10. Cai X., Wang J., Strain M.J., et al. Integrated compact optical vortex beam emitters // Science. 2012. V. 338. № 6105. P. 363–366. https://doi.org/10.1126/science.1226528
11. Исимару А. Распространение и рассеяние волн в случайно-неоднородных средах / пер. с англ. Апресяна Л.А. и др. М.: изд. Мир, 1981. Т. 1. Однократное рассеяние и теория переноса. 280 с.
Ishimaru A.Wave propagation and scattering in random media. V. 1. Single scattering and transportation. 1st ed. New York, San Francisco, London: Academic Press, 1978. 272 p.
12. Ландау Л.Д. Электродинамика сплошных сред / Теоретическая физика: учеб. пособ. для вузов. Т. VIII. 4-е изд. М.: ФИЗМАТЛИТ, 2005. 656 с.
Landau L.D. Electrodynamics of continuous media [in Russian] / Theoretical Physics: Textbook. Manual: for Universities. V. VIII. 4th ed. Moscow: FIZMATLIT Publ., 2005. 656 p.
13. Коренев Б.Г. Введение в теорию бесселевых функций / Под ред. Главной редакции физико-математической литературы. М.: Наука, 1971. 288 с.
Korenev B.G. Introduction to the theory of Bessel functions [in Russian] // Ed. The Main Editorial Office of the Physical and Mathematical Literature. Moscow: "Nauka" Publ., 1971. 288 p.
14. Li R., Feng X., Zhang D., et al. Radially polarized orbital angular momentum beam emitter based on shallow-ridge silicon microring cavity // IEEE Photonics. 2014. V. 6. № 3. P. 1–10. https://doi.org/10.1109/JPHOT.2014.2321757
15. Zhang J., Sun C., Xiong B., et al. An InP-based vortex beam emitter with monolithically integrated laser // Nature Commun. 2018. V. 9. № 1. P. 2652. https://doi.org/10.1038/s41467-018-05170-z
16. Bakirova L.I., Voronkov G.S., Lyubopytov V.S., et al. Micro-ring resonator-based tunable vortex beam emitter // Micromachines. 2023. V. 15. № 1. P. 34. https://doi.org/10.3390/mi15010034
ru