DOI: 10.17586/1023-5086-2025-92-08-21-31
УДК: 681.787
Laser-driven fiber-optic gyroscope
Full text on elibrary.ru
Ошлаков В.С., Алейник А.С., Волковский С.А., Стригалев В.Е., Мухтубаев А.Б. Применение полупроводникового лазерного диода в качестве источника оптического излучения волоконно-оптического гироскопа // Оптический журнал. 2025. Т. 92. № 8. С. 21–31. http://doi.org/10.17586/1023-5086-2025-92-08-21-31
Oshlakov V.S., Aleinik A.S., Volkovskii S.A., Strigalev V.E., Muhtubaev A.B. Laserdriven fiber-optic gyroscope [in Russian] // Opticheskii Zhurnal. 2025. V. 92. № 8. P. 21–31. http://doi.org/10.17586/1023-5086-2025-92-08-21-31
The subject of the study. The work presents the results of an experimental study on the application of a frequency-modulated semiconductor laser diode with distributed feedback in a fiber-optic gyroscope. The purpose of the study. The aim of the study is to improve the long-term stability of the scale factor of the fiber-optic gyroscope while maintaining the compactness of the optical radiation source integrated into the system. Method. Frequency-pulse current modulation was applied to reduce the coherence length of the laser diode emission. Broadband interferometry was used to evaluate the coherence length of the radiation, and optimal parameters of the fiber-optic gyroscope photodetection scheme were selected. The proposed configuration was tested on an open-loop fiber-optic gyroscope prototype, and a comparative assessment of the metrological characteristics of fiber-optic gyroscopes using a laser source and a superluminescent diode was conducted. The main results. The proposed scheme demonstrated its effectiveness. Long-term instability of the central wavelength and angular random walk were reduced to 1.3 ppm and 0.002 °/h1/2 respectively (compared to 17 ppm and 0.004 °/h1/2 for the scheme with a superluminescent diode). The bias drift (0.05 °/h) is comparable to that of the reference scheme (0.01 °/h); further reduction of this parameter remains a subject for future research. Practical significance. The experimental results on the use of a frequency-modulated distributed feedback laser diode in a fiber-optic gyroscope indicate the potential applicability of such sources in the development of compact, high-precision fiber-optic gyroscopes.
fiber-optic gyroscope, semiconductor laser diode, pulse current modulation
OCIS codes: 060.2800, 060.2380, 060.2370
References:1. Lefèvre H. The fiber-optic gyroscope. Boston: Artech House, 1993. 313 p.
2. Digonnet M.J.F., Udd E. Design and development of fiber optic gyroscopes. Bellingham, WA: SPIE Press, 2019. 520 p.
3. Egorov D.A., Klyuchnikova Ye.L., Untilov A.A., Aleinik A.S., Volkovskii S.A., Kuznetsov V.N., Oshlakov V.S., Pogudin G.K., Liokumovich L.B. Light sources for fiber-optic gyroscopes // Gyroscopy and Navigation. 2024. V. 15. № 2. P. 111–128. https://doi.org/10.1134/s2075108724700226
4. Aleinik A.S., Deineka I.G., Smolovik M.A., Neforosnyi S.T., Rupasov A.V. Compensation of excess RIN in fiber-optic gyro // Gyroscopy and Navigation. 2016. V. 7. № 2. P. 214–222. https://doi.org/10.1134/s2075108716030020
5. Guattari F., Kervella P., Briaudeau S., Dolfi D., Djangirian A. A simple optical technique to compensate for excess RIN in a fiber-optic gyroscope // 2014 DGON Inertial Sensors and Systems (ISS) // IEEE. 2014. P. 1–14. https://doi.org/10.1109/InertialSensors.2014.7049411
6. Wysocki P.F., Digonnet M.J.F., Kim B.Y., Shaw H.J. Characteristics of erbium-doped superfluorescent fiber sources for interferometric sensor applications // J. Lightwave Technol. 1994. V. 12. № 3. P. 550–567. https://doi.org/10.1109/50.285318
7. Park H.G., Digonnet M., Kino G. Er-doped superfluorescent fiber source with a ±0.5-ppm long-term meanwavelength stability // J. Lightwave Technol. 2003. V. 21. № 12. P. 3427–3433. https://doi.org/10.1109/JLT.2003.822539
8. Vostrikov E., Kikilich N., Zalesskaya Yu., Aleinik A., Smolovik M., Deyneka I., Meshkovskii I. Stabilisation of central wavelength of erbium-doped fibre source as part of high-accuracy fibre optic gyroscopes // IET Optoelectron. 2021. V. 15. № 6. P. 287–293. https://doi.org/10.1049/ote2.12040
9. Ashley P.R., Temmen M.G., Sanghadasa M. Applications of SLDs in fiber optical gyroscopes // Test and Measurement Applications of Optoelectronic Devices / Proc. SPIE. 2002. V. 4648. P. 104–115. https://doi.org/10.1117/12.462647
10.Chen X., Yang J., Zhou Y., Shu X. An improved temperature compensation circuit for SLD light source of fiber-optic gyroscope // J. Phys.: Conf. Ser. 2017. V. 916. International Conf. on Fluid Mechanics and Industrial Applications (FMIA 2017). Taiyuan, China. October 21–22, 2017. P. 012027. https://doi.org/10.1088/1742-6596/916/1/012027
11.Wheeler J., Digonnet M. A low-drift laser-driven FOG suitable for Trans-Pacific inertial navigation // J. Lightwave Technol. 2022. V. 40. P. 7464–7470. https://doi.org/10.1109/JLT.2022.3201189
12.Jia H., Wheeler J.M., Iantosca T., Digonnet M.J.F. Low-drift fiber-optic gyroscope interrogated with multiple broadened semiconductor lasers // J. Lightwave Technol. 2024. V. 42. № 13. P. 4666–4673. https://doi.org/10.1109/JLT.2024.3376511
13.Wheeler J.M., Chamoun J.N., Digonnet M.J.F. Optimizing coherence suppression in a laser broadened by phase modulation with noise // J. Lightwave Technol. 2021. V. 39. № 9. P. 2994–3001. https://doi.org/10.1109/JLT.2021.3061938
14. Komljenovic T., Tran M.A., Belt M., Gundavarapu S., Blumenthal D.J., Bowers J.E. Frequency modulated lasers for interferometric optical gyroscopes // Opt. Lett. 2016. V. 41. P. 1773–1776. https://doi.org/10.1364/OL.41.001773
15. Njegovec M., Donlagic D. Rapid and broad wavelength sweeping of standard telecommunication distributed feedback laser diode // Opt. Lett. 2013. V. 38. P. 1999–2001. https://doi.org/10.1364/OL.38.001999
16. Njegovec M., Donlagic D. Interrogation of FBGs and FBGs arrays using standard telecom DFB diode // Journal of Lightwave Technology. 2016. V. 34. № 22. P. 5340–5348. https://doi.org/10.1109/JLT.2016.2616725
17. Киреенков А.Ю. Волоконно-оптические интерферометрические методы для построения измерительных систем на основе поверхностно-излучающего лазера // Автореф. канд. дис. Санкт-Петербург: НИУ ИТМО, 2017. 155 с.
Kireenkov A.Iu. Fiber-optic interferometric methods for constructing the measuring systems based on a surface-emitting laser // Dissertation for the degree of candidate of technical sciences. St. Petersburg: NIU ITMO, 2017. 155 p.
18.Horowitz P., Hill W. The art of electronics. 3rd ed. Cambridge: Cambridge Univ. Press, 2015. 1125 p.
19. Untilov A., Egorov D., Rupasov A., Novikov R., Neforosnyi S., Azbeleva A., Dranitsyna E. Results of fiberoptic gyro testing // Gyroscopy Navig. 2017. V. 25. P. 78–85. https://doi.org/10.1134/S207510871801008X
ru