DOI: 10.17586/1023-5086-2025-92-08-3-13
УДК: 535.4
Determination of optimal conditions for wavefront phase conjugation in the photorefractive crystal of 43m symmetry class
Full text on elibrary.ru
Навныко В.Н. Определение оптимальных условий обращения волнового фронта в фоторефрактивном кристалле класса симметрии 43m // Оптический журнал. 2025. Т. 92. № 8. С. 3–13. http://doi.org/10.17586/1023-5086-2025-92-08-3-13
Naunyka V.N. Determination of optimal conditions for wavefront phase conjugation in the photorefractive crystal of symmetry class 43m [in Russian] // Opticheskii Zhurnal. 2025. V. 92. № 8. P. 3–13. http://doi.org/10.17586/1023-5086-2025-92-08-3-13
Subject of study. Wavefront conjugation by diffraction of light beams on phase-amplitude holographic gratings in a cubic photorefractive crystal of ͞43m symmetry class. Aim of study. Determination of optimal conditions for four-wave mixing in the photorefractive crystal of ͞43m symmetry class , under which the highest intensity of the phase conjugated beam is achieved. Method. Numerical solution of coupled waves equations which takes into account the contribution of the linear electro-optical, photoelastic and inverse piezoelectric effects, as well as the linear absorption of the crystal. Main results. Under optimal conditions, a higher reflection coefficient for four-wave mixing is achieved in semiconductor with GaAs parameters of (111) cut than in the crystal of (110) and (001) cuts. For a given linear absorption coefficient, local maxima of the reflection coefficient are achieved when the crystal thickness is in a neighborhood of 20 mm. For each crystal cut, the values of the crystal orientation angle and the azimuths of the linear polarization of the light beams are established, at which the intensity of the phase-conjugated beam reaches its greatest value. Practical significance. The data presented in the article can be useful for increasing the efficiency of light beam diffraction by holographic gratings in the GaAs semiconductor by choosing optimal values of the crystal and holographic setup parameters.
wavefront conjugation, photorefractive crystal, holographic grating, reflectivity
Acknowledgements:the study was financially supported by the Ministry of Education of the Republic of Belarus (Agreement dated March 22, 2021. 1410/2021) within the State Program of Scientific Studies № 6 "Photonics and Electronics for Innovations" in 2021–2025 (Assignment 6.1.14)
OCIS codes: 160.5320, 190.4380, 090.7330
References:1. Петров М.П., Степанов С.И., Хоменко А.В. Фоторефрактивные кристаллы в когерентной оптике. СПб.: Наука, 1992. 320 с.
Petrov M.P., Stepanov S.I., Khomenko A.V. Photorefractive crystals in the coherent optics [in Russian]. St. Petersburg: Nauka, 2004. 320 p.
2. Петров В.М., Шамрай А.В. Интерференция и дифракция для интерференционной фотоники. СПб.: Издательство «Лань», 2019. 460 с.
Petrov V.M., Chamrai A.V. Interference and diffraction for interference photonics. St. Petersburg: Publishing house “Lan”, 2019. 460 p.
3. Frejlich J. Photorefractive materials for dynamic optical recording: fundamentals, characterization, and technology. N.J.: JohnWiley & Sons Inc., 2020. 310 p.
4. Katti A., Yadav R.A. Optical spatial solitons in photorefractive materials. Singapore: Springer Nature, 2021. 169 p.
5. Wang H., Jiao Z., Sun M., Liu C., Zhu J. High-contrast phase imaging based on nonlinear holographic hot image model // AIP Advances. 2022. V. 12. P. 065315. https://doi.org/10.1063/5.0089116
6. Chai Y., Marsal N., Wolfersberger D. Fully controllable multichannel waveguides induced by counterpropagating Bessel beams // Scientific Reports. 2022. V. 12. P. 17566. https://doi.org/10.1038/s41598-022-22384-w
7. Lai P., Chang C., Liu X., Wei D. Multiplexing linear and nonlinear Bragg diffractions through volume gratings fabricated by femtosecond laser writing in lithium niobate crystal // Photonics. 2023. V. 10. P. 562. https://doi.org/10.3390/photonics10050562
8. Толстик А.Л., Ивакин Е.В., Даденков И.Г. Преобразование световых пучков и диагностика материалов методами динамической голографии // Журнал прикладной спектроскопии. 2023. Т. 90. № 2. С. 316–323. https://doi.org/10.47612/0514-7506-2023-90-2-316-323
Tolstik A.L., Ivakin E.V., Dadenkov I.G. Light beam transformation and material diagnostics by dynamic holography methods // Journal of Applied Spectroscopy. 2023. V. 90. P. 407–413. https://doi.org/10.1007/s10812-023-01547-1
9. Bile A., Tari H., Fazio E. Episodic memory and information recognition using solitonic neural networks based on photorefractive plasticity // Appl. Sci. 2022. V. 12. P. 5585. https://doi.org/10.3390/app12115585
10. Vlieg E.A., Talandier L., Dangel R., Horst F., Offrein B.J. An integrated photorefractive analog matrix-vector multiplier for machine learning // Appl. Sci. 2022. V. 12. P. 4226. https://doi.org/10.3390/app12094226
11. Одулов С.Г., Соскин М.С., Хижняк А.И. Лазеры на динамических решетках: оптические генераторы на четырехволновом смешении. М.: Наука, 1990. 272 с.
Odulov S.G., Soskin M.S., Hijnyak A.I. Dynamic grating lasers: optical generators based on four-wave mixing [in Russian]. Moscow: Science, 1990. 272 p.
12. Ding Y., Eichler H.J. Crystal orientation dependence of the photorefractive four-wave mixing in compound semiconductors of symmetry group ͞43m// Opt. Comm. 1994. V.110. P.456–464. https://doi.org/10.1016/0030-4018(94)90449-9
13. Stepanov S.I., Petrov V.M. Degenerate four-wave mixing via shifted phase holograms in cubic photorefractive crystals // Opt. Comm. 1985. V. 53. P. 64–68. https://doi.org/10.1016/0030-4018(85)90263-9
14. Erdmann A., Kowarschik R. Theory of degenerate fourwave mixing in anisotropic, optically active photorefractive crystals // IEEE J. of Quant. Electron. 1988. V. 24. №. 2. P. 155–161. https://doi.org/10.1109/3.109
15. Литвинов Р.В., Полковников С.А., Шандаров С.М. Самовозбуждение взаимно обращенных световых волн в кубическом гиротропном фоторефрактивном кристалле с приложенным меандровым электрическим полем // Квантовая электроника. 2001. Т. 31. № 2. С. 167–172.
Litvinov R.V., Polkovnikov S.I., Shandarov S.M. Selfexcitation of mutually phase-conjugated light waves in a cubic gyrotropic photorefractive crystal subjected to a square-wave electric field // Quantum Electronics. 2001. V. 31. № 2. P. 167–172. https://doi.org/10.1070/QE2001v031n02ABEH001911
16. Гусельникова А.В., Шандаров С.М., Плесовских А.М. и др. Векторное четырехволновое взаимодействие света на отражательных решетках в кристаллах титаната висмута // Оптический журнал. 2006. Т. 73. № 11. С. 22–27.
Gusel’nikova A.V., Shandarov S.M., Plesovskikh A.M., et al. Vector four-wave mixing of light at reflective gratings in bismuth titanate crystals // Journal of Optical Technology. 2006. V. 73. № 11. P. 760–763. https://doi.org/10.1364/JOT.73.000760
17. Salazar A., Góez R., Sierra D. et al. Optical wavelet correlator by four-wave mixing via reflection holograms in a BSO crystal // Opt. Comm. 2004. V. 239. P. 287–296. https://doi.org/10.1016/j.optcom.2004.05.049
18.Nehmetallah G., Banerjee P., Khoury J. Adaptive defect and pattern detection in amplitude and phase structures via photorefractive four-wave mixing // Appl. Opt. 2015. V. 54. № 32. P. 9622–9629. https://doi.org/10.1364/AO.54.009622
19. Shcherbin K., Gadret G., Jauslin H.R. et al. Slowing down of light pulses using backward-wave four-wave mixing with local response // J. Opt. Soc. Am. B. 2015. V. 32. № 12. P. 2536–2547. https://doi.org/10.1364/JOSAB.32.002536
20. Yadav T.K., Maurya M.K., Kumar S. et al. Dielectric and photoconductivity dependence study of four-wave mixing process in photorefractive materials // Indian Journal of Physics. 2022. V. 96. P. 3289–3296. https://doi.org/10.1007/s12648-021-02244-5
21. Навныко В.Н. Анализ закономерностей встречного четырехволнового взаимодействия в кубическом фоторефрактивном кристалле среза (001) // Письма в ЖТФ. 2023. Т. 49. Вып. 20. С. 35–38. https://doi.org/10.21883/PJTF.2023.20.56345.19699
Naunyka V.Counterpropagating four-wave mixing on amplitude–phase holographic gratings in a qubic photorefractive crystal // Tech. Phys. Lett. 2023. V.49. №10. P.71–74. https://doi.org/10.61011/TPL.2023.10.57064.19699
22. Shcherbin K., Odoulov S., Litvinov R. et al. Contribution of nonlinear absorption and elasto-optic effect in photorefractive grating recording in GaAs // J. Opt. Soc. Am. B. 1996. V. 13. № 10. P. 2268–2277. https://doi.org/10.1364/JOSAB.13.002268
23. Montemezzani G., Zgonik M. Light diffraction at mixed phase and absorption gratings in anisotropic media for arbitrary geometries // Phys. Rev. E. 1997. V. 55. № 1. P. 1035–1047. https://doi.org/10.1103/PhysRevE.55.1035
24. Навныко В.Н. Встречное четырехволновое взаимодействие на фазово-амплитудных голографических решетках в кубическом фоторефрактивном кристалле // Квантовая электроника. 2022. Т. 52. № 20. С. 731–738.
Naunyka V. Counterpropagating four-wave mixing on amplitude–phaseholographic gratings in a qubic photorefractive crystal // Bulletin of the Lebedev Physics Institute. 2022. V. 49. Suppl. 1. P. S58–S67. https://doi.org/10.3103/S1068335622130073
25. Ja Y.H. Using the shooting method to solve boundaryvalue problems involving nonlinear coupled-wave equations // Opt. and Quant. Electron. 1983. V. 15. P. 539–546. https://doi.org/10.1007/bf00620022
26. Dargys A., Kundrotas J. Handbook on physical properties of Ge, Si, GaAs and InP. Vilnius: Science and Encyclopedia Publishers, 1994. 264 p.
27. Mallick S., Miteva M., Nikolova L. Polarization properties of self-diffraction in sillenite crystals: reflection volume gratings // J. Opt. Soc. Am. B. 1997. V. 14. № 5. P. 1179–1186. https://doi.org/10.1364/JOSAB.14.001179
ru