ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2025-92-08-32-39

Electric field sensor based on photonic crystal at THz wave

For Russian citation (Opticheskii Zhurnal):

Xiaogang Wu, Xin Li, Shiliang Guo. Electric field sensor based on photonic crystal at THz wave (Датчик электрического поля на основе фотонного кристалла c использованием электромагнитных волн терагерцового диапазона) [на англ. языке] // Оптический журнал. 2025. Т. 92. № 8. С. 32–39. http://doi.org/10.17586/1023-5086-2025-92-08-32-39

 

Xiaogang Wu, Xin Li, Shiliang Guo. Electric field sensor based on photonic crystal at THz wave (Датчик электрического поля на основе фотонного кристалла c использованием электромагнитных волн терагерцового диапазона) [in English] // Opticheskii Zhurnal. 2025. V. 92. № 8. P. 32–39. http://doi.org/10.17586/1023-5086-2025-92-08-32-39

For citation (Journal of Optical Technology):
-
Abstract:

Subject of study. A novel THz electric field sensor, based on two-dimensional photonic crystal, is proposed. Purpose of the work. In this work, the main efforts were made to design a novel electric field sensing structure based on two-dimensional photonic crystal, by use of the unique feature of electric-optic effect for Lithium Niobate (LiNbO3) at the frequency range of 1.5–3.5 THz. The influence of the change of external electric field on the band structure of the THz electric field sensing structure based on two-dimensional photonic crystal, and the electric field sensing characteristics of the THz electric field sensor within the detection range of electric field intensity were researched. Method. The structure size for the THz electric field sensor is analyzed to get the optimal value by the finite element method, in order that the sensitivity is able to reach the optimal value. Main results. The optimal structure size is given, and the sensitivity of THz electric field sensor can reach 1.21ґ10–3 THz/(mv/nm), and the photonic band gaps can reach 0.10 THz, within the detection range of electric field intensity, 100–1000 mV/nm. And the relationship between electric field intensity and the terahertz frequency of photonic band gaps is obtained within the detection range of electric field intensity. Practical significance. It is realized the detection of electric field by terahertz wave. The proposed THz electric field sensor provides a new electric field detection technology for the field of electric field sensing detection.

Keywords:

electric field sensor, photonic crystal, Terahertz range, band gaps, sensitivity

Acknowledgements:

Zhejiang Provincial Natural Science Foundation (LGN20E060001); Science and Technology Project of Hebei Education Department under Grant (ZD2022087); Hebei Innovation Center for Smart Perception and Applied Technology of Agricultural Data (ADIC2023Y002)

OCIS codes: 220.0220, 260.1180, 280.4788, 300.6495

References:

1. Rostami A., Rasooli H., Baghban H. An overview of the technological and scientific achievements of the Terahertz // Terahertz Tech. 2010. V. 77. P. 1–89. https://doi.org/10.1007/978-3-642-15793-6_1
2. Musina G.R., Nikitin P.V., Chernomyrdin N.V. et al. Prospects of terahertz technology in diagnosis of human brain tumors — a review // J. Biomed. Photonics Eng. 2020. V. 6. № 2. P. 020201. https://doi.org/10.18287/JBPE20.06.020201
3. Manjappa M., Singh R. Materials for terahertz optical science and technology // Adv. Opt. Mater. 2020. V. 8. № 3. P. 1901984. https://doi.org/10.1002/adom. 201901984
4. Abadla M.M., Mousa H.M., Shabat M.M. Nonlinear planar optical waveguide sensors comprising metamaterial guiding films at terahertz frequencies // Opt. Quant. Electron. 2018. V. 50. P. 394. https://doi.org/10.1007/s11082-018-1669-8
5. Karthikeyan M.P., Samanta D., Banerjee A. et al. Design and development of terahertz medical screening devices // Trends in Wireless Communication and Information Security. 2021. V. 740. P. 395–404. https://doi.org/10.1007/978-981-33-6393-9
6. Tzydynzhapov G., Gusikhin P., Muravev V. et al. New real-time sub-terahertz security body scanner // J. Infrared Milli. Terahz. Waves. 2020. V. 41. P. 632–641. https://doi.org/10.1007/s10762-020-00683-5
7. Tao Y.H., Fitzgerald A.J., Wallace V.P. Non-contact, non-destructive testing in various industrial sectors with terahertz technology // Sensors. 2020. V. 20. № 3. P. 712. https://doi.org/10.3390/s20030712
8. Nejat M., Nozhat N. Ultrasensitive THz refractive index sensor based on a controllable perfect MTM absorber // IEEE Sensors Journal. 2019. V. 19. № 22. P. 10490–10497. https://doi.org/10.1109/JSEN.2019.2931057
9. Karmakar S., Kumar D., Varshney R.K. et al. Strong terahertz matter interaction induced ultrasensitive sensing in Fano cavity based stacked metamaterials // J. Physics D: Applied Physics. 2020. V. 53. № 41. P. 415101. https://doi.org/10.1088/1361-6463/ab94e3
1-. Abramova V., Sinitskii A., Tretyakov Y. Photonic crystals with a specified bandgap width // JETP Letters. 2007. V. 86. № 41. P. 317–320. https://doi.org/10.1134/S0021364007170080
11.Ciobanu M., Preda L., Savastru D. et al. Band gaps for some specific photonic crystals structures // Quantum Matter. 2013. V. 2. № 1. P. 60–66. https://doi.org/ 10.1166/qm.2013.1026
12. Tong K., Cui W., Yan G. et al. Study on temperature property of band structures in one-dimensional photonic crystals // Optoelectron. Lett. 2007. V. 3. P. 444–447. https://doi/org/10.1007/s11801-007-7063-6
13. Ei-Naggar S.A. Tunable terahertz omnidirectional photonic gap in one dimensional graphene-based photonic crystal // Opt. Quant. Electron. 2015. V. 47. № 7. P. 1627–1636. https://doi.org/10.1007/s11082-014-0021-1
14. Zegadi R., Ziet L., Satour F. Z. et al. Design of a wide ranging highly sensitive pressure sensor based on twodimensional photonic crystals // Plasmonics. 2019. V. 
15. P. 907–913. https://doi.org/10.1007/s11468-018-0873-514. Jahani D., Raissi B., Taati F. et al. Optical properties of fluidic defect states in one-dimensional graphenebased photonic crystal biosensors: visible and infrared Hall regime sensing // Eur. Phys. J. Plus. 2020. V. 135. P. 160. https://doi.org/10.1140/epjp/s13360-019-00056-5
16. Rao D.G.S., Swarnakar S., Palacharla V. et al. Design of all-optical AND, OR, and XOR logic gates using photonic crystals for switching applications // Photon. Netw. Commun. 2021. V. 41. P. 109–118. https://doi.org/10.1007/s11107-020-00916-6
17. Li J. Terahertz modulator using photonic crystals // Opt. Commun. 2007. V. 269. № 1. P. 98–101. https://doi.org/10.1016/j.optcom.2006.07.053
18. Sultana J., Islam M.S., Ahmed K. et al. Terahertz detection of alcohol using a photonic crystal fiber sensor // Appl. Optics. 2018. V. 57. № 10. P. 2426–2433. https://doi.org/10.1364/AO.57.002426
19. Mou F.A., Rahman M.M., Islam M.R. et al. Development of a photonic crystal fiber for THz wave guidance and environmental pollutants detection // Sensing and Bio-Sensing Research. 2020. V. 29. P. 100346.10. https://doi.org/1016/j.sbsr.2020.100346
20. Sen S., Abdullah-Al-Shafi M., Sikder A.S. et al. Zeonex based decagonal photonic crystal fiber (D-PCF) in the terahertz (THz) band for chemical sensing applications // Sensing and Bio-Sensing Research. 2020. V. 31. P. 100393. https://doi.org/10.1016/j.sbsr.2020.100393
21. Kuiri B., Dutta B., Sarkar N. et al. Design and optimization of photonic crystal fiber with low confinement loss guiding 98 OAM modes in THz band // Optical Fiber Tech. 2022. V. 68. P. 102752. https://doi.org/10.1016/j.yofte.2021.102752
22. Bendib S., Zegadi A., Djeffal N. Improved sensitivity of 2D annular photonic crystal biosensor working at THz frequency range // Opt. Quant. Electron. 2025. V. 48. P. 528. https://doi.org/10.1007/s11082-016-0803-8
23. Hossain M.S., Faruq M.O., Rana M.M. et al. Sensitivity analysis for detecting chemicals by the optical chemical sensor based Photonic Crystal Fiber (PCF) in the Terahertz (THz) regime // Phys. Scr. 2021. V. 96. № 12. P. 125121. https://doi.org/10.1088/1402-4896/ac42ec
24. Zegadi R., Zegadi A., Zebiri C. et al. Enhanced 2D photonic crystal sensor for high sensitivity sulfuric acid (H2SO4) and hydrogen peroxide (H2O2) detection // Silicon. 2025. V. 14. № 16. P. 11001–11006. https://doi.org/10.1007/s12633-022-01836-y
25. Kim W.K., Kwon S.W., Jeong W.J. et al. Integrated optical modulator for signal up-conversion over radio-onfiber link // Optics Express. 2009. V. 17. № 4. P. 2638–2645. https://doi.org/10.1364/OE.17.002638
26. Bosyj C., Bhadwal N., Coyle T. et al. Brazing strategies for high temperature ultrasonic transducers based on LiNbO3 piezoelectric elements // Instruments. 2018. V. 3. № 1. P. 2. https://doi.org/10.3390/instruments3010002
27. Taleb S.M., Fakhri M.A., Adnan S.A. Physical investigations of nanophotonic LiNbO3 films for photonic applications // J. Ovonic Research. V. 15. № 4. P. 261–269.
28. Takigawa R., Utsumi J. Direct bonding of LiNbO3 and SiC wafers at room temperature // Scripta Materialia. 2019. V. 174. P. 58–61. https://doi.org/10.1016/ j.scriptamat.2019.08.027
29.Razi S., Ghasemi F. Tunable photonic crystal wavelength sampler with response in terahertz frequency range // Opt. Quant. Electron. 2019. V. 51. P. 104. https://doi.org/10.1007/s11082-019-1821-0
30. Hebling J., Stepanov A.G., Almási G. et al. Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts // Appl. Phys. B. 2004. V. 78. P. 593–599. https://doi.org/ 10.1007/s00340-004-1469-7
31. Stoyanov N.S., Feurer T., Ward D.W. et al. Direct visualization of a polariton resonator in the THz regime // Optics Express. 2004. V. 12. № 11. P. 2387–2396. https://doi.org/10.1364/OPEX.12.002387