ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2025-92-08-51-61

УДК: 681.787

Experimental study of the method of synchronous frequency-hopping of the optical source for fading noise suppression of the coherent optical time-domain reflectometer

For Russian citation (Opticheskii Zhurnal):

Плотников М.Ю., Ушанов С.А., Куничкин Д.П., Волков А.В., Подчуфаров А.Ю. Экспериментальное исследование метода синхронной перестройки частоты источника излучения для подавления шумов замирания когерентного оптического рефлектометра // Оптический журнал. 2025. Т. 92. № 8. С. 51–61. http://doi.org/10.17586/1023-5086-2025-92-08-51-61

 

Plotnikov M.Y., Ushanov S.A., Kunichkin D. P., Volkov A.V., Podchufarov A.Y. Experimental study of the method of synchronous frequency-hopping of the optical source for fading noise suppression of the coherent optical time-domain reflectometer [in Russian] // Opticheskii Zhurnal. 2025. V. 92. № 8. P. 51–61. http://doi.org/10.17586/1023-5086-2025-92-08-51-61

For citation (Journal of Optical Technology):
-
Abstract:

Subject of study. The paper presents the results of experimental investigation of the method of suppression of fading noise of a coherent optical reflectometer based on synchronous frequency-hopping of the optical source. Aim of study. The main goal of the work was the measurement error reduction of a coherent optical reflectometer by using the method of synchronous frequency-hopping of the optical source by determining the optimal step and period of frequency-hopping to provide the maximum suppression of fading nose of reflectograms. Method. For the experimental study of the method in the coherent optical time-domain reflectometer the frequency-hopping of the optical source with adjustable step, synchronous with the frequency of sending optical pulses into the fiber under test, was implemented. As a criterion for evaluating the efficiency of the method, the standard deviation of reflectograms relative to the trend of optical losses in the optical fiber under test was used. Main results. It was experimentally shown that the use of synchronous frequency-hopping of the optical source allows to reduce the measurement error of the Rayleigh backscattering by a value of up to 8.8 times for the duration of optical pulses in the range from 1 µs to 100 µs. It was shown that increasing the period of reflectogram acquisition from 1.5 ms to 1 s provides a decrease in the fading noise lvel and measurement error reduction of the Rayleigh backscat-tering of the coherent optical time-domain reflectometer by a value of up to 5.8 times at the pulse width of 10 µs. Practical significance. The obtained results allow us to formulate requirements to the step size and period of the frequency-hopping cycle of the optical source to provide the minimum level of the fading noise and minimum measurement error of the coherent optical time-domain reflectometer.

Keywords:

coherent reflectometer, optical reflectometry, interferometric measurements, fading noise, frequency-hopping

Acknowledgements:

the research was carried out within the state assignment of Ministry of Science and Higher Education of the Russian Federation (project No. № FSER-2024-0006).

OCIS codes: 060.0060, 230.0230, 250.0250

References:

1. Zhang C., Ito F. Recent progress of fiber diagnostic technologies for optical fiber networks: distributed fiber sensing and fiber characterization // Metro and Data Center Optical Networks and Short-Reach Links. 2022. V. 12027. P. 89–104. https://doi.org/10.1117/12.2607242
2. Листвин А.В. Рефлектометрия оптических волокон / Под ред. Листвина А.В., Листвина В.Н. Москва: ЛЕСАРарт, 2005. 208 с.
Listvin A.V. Reflectometry of optical fibers [in Russian] / Ed. Listvin A.V., Listvin V.N. Moscow: Lesrart, 2005. 208 p.
3. Chen X., Zou N., Liang L., He R., Liu J., Zheng Y., Wang F., Zhang X., Zhang Y. Submarine cable monitoring system based on enhanced COTDR with simultaneous loss measurement and vibration monitoring ability // Optics Express. 2021. V. 29. № 9. P. 13115–13128. https://doi.org/10.1364/OE.418920
4. Hartog A.H. An introduction to distributed optical fibre sensors. BocaRaton: CRC press, 2017. 472 p. https://doi.org/10.1201/9781315119014
5. Веретенников Н.П.,Леонтьев Р.Г. Арктика РФ: транспортная и телекоммуникационная инфраструктура, экономика и безопасность страны // Национальная ассоциация ученых. 2021. Т. 2. № 71. С. 29–37. https://doi.org/10.31618/nas.2413-5291.2021.2.71.479

Veretennikov N.P., Leontiev R.G. The Arctic: The transport and telecommunication of infrastructure, the economy, national security // National Association of Scientists. 2021. V. 71. № 2. P. 29–37. https://doi.org/10.31618/nas.2413-5291.2021.2.71.479
6. Healey P. Instrumentation principles for optical time domain reflectometry // Journal of Physics E: Scientific Instruments. 1986. V. 19(5). P. 334. https://doi.org/10.1088/0022-3735/19/5/002
7. Liokumovich L.B., Ushakov N.A., Kotov O.I., Bisyarin M.A., Hartog A.H. Fundamentals of optical fiber sensing schemes based on coherent optical time domain reflectometry: Signal model under static fiber conditions//Journal of Lightwave Technology. 2015. V. 33. № 17. P. 3660–3671. https://doi.org/10.1109/JLT.2015.2449085
8. Наний О.Е., Никитин С.П., Трещиков В.Н. Влияние фазовых шумов лазера на работу когерентного рефлектометра при использовании волокон с массивами искусственных отражателей // Автометрия. 2023. Т. 59. № 1. С. 87–114. https://doi.org/10.15372/AUT20230109
Naniy O.E., Nikitin S.P., Treshchikov V.N. The influence of laser phase noise on the operation of a coherent reflectometer using fibers with arrays of artificial reflectors // Avtometriya. 2023. V. 59. № 1. P. 87–114. https://doi.org/10.15372/AUT20230109
9. King J., Smith D., Richards K., Timson P., Epworth R., Wright S. Development of a coherent OTDR instrument // Journal of Lightwave Technology. 1987. V. 5. № 4. P. 616–624. https://doi.org/10.1109/JLT.1987.1075523
10. Алексеев А.Э., Вдовенко В.С., Горшков Б.Г., Потапов В.Т., Симикин Д.Е. Когерентный двухчастотный фазочувствительный рефлектометр с амплитудной модуляцией зондирующих импульсов // Радиотехника и электроника. 2016. Т. 61. № 4. С. 384–388. http://doi.org/10.7868/S0033849416040033
Alekseev A.E., Vdovenko V.S., Gorshkov B.G., Potapov V.T., Simikin D.E. A coherent dual-frequency phase-sensitive reflectometer with amplitude modulation of probing pulses // Radiotekhnika i Elektronika. 2016. V. 61. № 4. P. 384–388. http://doi.org/10.7868/S0033849416040033
11. Xiao L., Wang Y., Li Y., Bai Q., Liu X., Jin B. Polarization fading suppression for optical fiber sensing: a review // IEEE Sensors Journal. 2022. V. 22. № 9. P. 8295–8312. https://doi.org/10.1109/JSEN.2022.3161075
12. Izumita H., Furukawa S.I., Koyamada Y., Sankawa I. Fading noise reduction in coherent OTDR // IEEE Photonics Technology Letters. 1992. V. 4. № 2. P. 201–203. https://doi.org/10.1109/68.122361
13. Lu L., Sun X., Bu X., Li B. Coherent optical time domain reflectometry by logarithmic detection and timed random frequency hopping // Optical Engineering 2017. V. 56. № 2. P. 024106. https://doi.org/10.1117/1.OE.56.2.024106
14. Liang Y., Lv L., Huang L., Wang D., Li P. Noise reduction method based on timed frequency hopping in long distance optical fiber sensing system // Journal of Computational Methods in Sciences and Engineering. 2018. V. 18. № 2. P. 339–348. https://doi.org/10.3233/JCM-180793
15. Yang Z., Li C., Xu S., Yang C. Single-frequency fiber lasers. Singapore: Springer, 2019. 170 p.
16. Mermelstein M.D., Posey Jr.R., Johnson G.A., Vohra S.T. Rayleigh scattering optical frequency correlation in a single-mode optical fiber // Optics Letters. 2001. V. 26. № 2. P. 58–60. https://doi.org/10.1364/OL.26.000058
17. Sun Y., Wei F., Dong Z., Chen D., Cai H., Qu R. All-optical frequency stabilization and linewidth reduction of distributed feedback diode lasers by polarization rotated optical feedback // Optics Express. 2014. V. 22. № 13. P. 15757–15762. https://doi.org/10.1364/OE.22.015757
18. Власов А.А., Плотников М.Ю., Волков А.В., Лавров В.С., Шарков И.А., Алейник А.С. Компенсация воздействия шумов окружающей среды на работу волоконно-оптического интерферометра // Оптический журнал. 2020. Т. 87. № 9. С. 44–53. http://doi.org/10.17586/1023-5086-2020-87-09-44-53
Vlasov A.A., Plotnikov M.Y., Volkov A.V., Lavrov V.S., Sharkov I.A., Aleinik A.S. Compensating the influence of background noise on the operation of a fiberoptic interferometer // Journal of Optical Technology. 2020. V. 87. № 9. P. 535–541. https://doi.org/10.1364/JOT.87.000535
19. Vlasov A.A., Plotnikov M.Y., Aleinik A.S., Volkov A.V. Environmental noise cancellation technique for the compensation interferometer in fiber-optic PMDIbased sensor arrays // IEEE Sensors Journal. 2020. V. 20. № 23. P. 14202–14208. https://doi.org/10.1109/JSEN.2020.3008818
20. Vlasov A.A., Plotnikov M.Y., Volkovsky S.A., Aleinik A.S., Motorin E.A., Sharkov I.A., Makarenko A.A. Development of the passive vibroacoustic isolation system for the path matched differential interferometry based fiber-optic sensors // Optical Fiber Technology. 2020. V. 57. P. 102241. https://doi.org/10.1016/j.yofte.2020.102241