DOI: 10.17586/1023-5086-2025-92-08-62-71
УДК: 004.925.3
Modeling of light transfer using a modified method of vertex connection and merging, and multiple sampling by significance
Full text on elibrary.ru
Вяткин С.И., Долговесов Б.С. Моделирование переноса света с применением модифицированного метода соединения и слияния вершин и множественной выборки по значимости // Оптический журнал. 2025. Т. 92. № 8. С. 62–71. http://doi.org/10.17586/1023-5086-2025-92-08-62-71
Vyatkin S.I., Dolgovesov B.S. Modeling of light transfer using a modified method of vertex connection and merging, and multiple sampling by significance [in Russian] // Opticheskii Zhurnal. 2025. V. 92. № 8. P. 62–71. http://doi.org/10.17586/1023-5086-2025-92-08-62-71
The subject of the study. The subject of the study is realistic computer graphics, which is based on physically correct modeling of light propagation. The article considers the task of rendering functionally defined scenes with a sample of significance to reduce variance. Multiple sampling by significance is used to reduce the variance of calculations. However, when sampling and weighting are not suitable for the integrand, calculations will have additional variance. Light transfer modeling based on sampling for different types of scenes has problems with the reliability of rendering algorithms. The purpose of the work. Development of a reliable method for modeling light transfer based on multiple significance sampling for various types of scenes. Method. A numerical integration method is proposed for better convergence and lower variance. The sampling strategy and the weight function are used to determine the sampling quality for both mirrored and non-mirrored functionally defined surfaces. The result is realistic rendering effects with a high convergence rate. Mirrored surfaces and their mirror shadows contain a large amount of detail with less noise. The main results. A sampling method of significance is proposed to increase the reliability of light transfer modeling. The approach combines the sampling method and the weighting function. A combination of bidirectional path tracing with method of vertex connection and merging, while maintaining the performance of bidirectional path tracing. Practical significance. As a result, a method has been implemented that effectively reduces variance in functionally defined scenes, while improving sample quality and generating realistic rendering effects.
method of vertex connection and merging, global lighting, sampling by significance, ray tracing
Acknowledgements:the work was carried out with the support of the Ministry of Science and Higher Education as part of the work on State Assignment № 124041700102-4 in the IAE SB RAS
OCIS codes: 060.2330
References:1. Grittmann P., Yazici O., Georgiev I, Slusallek P. Efficiency-aware multiple importance sampling for bidirectional rendering algorithms // ACM Transactions on Graphics. 2022. V. 41. № 4. P. 1–12. https://doi.org/10.1145/3528223.3530126
2. Vyatkin S., Dolgovesov B. The method of multiple sampling by significance for the visualization of functionally defined scenes // E3S Web of Conferences: International Scientific and Practical Conference «Environmental Risks and Safety in Mechanical Engineering. 2023». (ERSME — 2023). Rostov-on-Don. Russia. March 1–3. 2023. V. 376. Article Number 05029. https://doi.org/10.1051/e3sconf/202337605029
3. Su F., Li S. Wang G. SPCBPT: subspace-based probabilistic connections for bidirectional path tracing // ACM Transactions on Graphics. 2022. V. 41. № 4. P. 1–14. https://doi.org/10.1145/3528223.3530183
4. Grittmann P., Georgiev I., Slusallek P. Correlationaware multiple importance sampling for bidirectional rendering algorithms // Computer Graphics Forum. 2021. V.40. №2. P.231–238. https://doi.org/10.1111/cgf.142628
5. Qu С. Research and analysis of ray tracing methods // Applied and Computational Engineering. 2023. V. 8. № 1. P. 274–282. https://doi.org/10.54254/2755-2721/8/20230153
6. Xing Q., Chen C., Li Z. Progressive path tracing with bilateral-filtering-based denoising // Multimedia Tools and Applications. 2021. V. 80. № 4. P. 1–16. https://doi.org/10.1007/s11042-020-09650-7
7. Fan Z., Hong P., Guo J., Zou C., Guo Y., Yan L-Q. Manifold path guiding for importance sampling specular chains // ACM Transactions on Graphics. 2023. V. 42. № 6. P. 1–14. https://doi.org/10.1145/3618360
8. Huo Y.C., Jin S.H., Tao L., Hua W., Wang R., Bao H.J. Spherical Gaussian-based lightcuts for glossy interreflections // Computer Graphics Forum. 2020. V. 39. № 3. P. 192–203. https://doi.org/10.1111/cgf.14011
9. Evangelou I., Papaioannou G., Vardis K., Vasilakis A.A. Rasterisation-based progressive photon mapping // The Visual Computer. 2020. V. 36. №6. P. 1–12. https://doi.or/10.1007/s00371-020-01897-3
10. Xing Q., Chen C. Novel accelerated stochastic progressive photon mapping rendering with neural network // Journal of Physics Conference Series. 2021. V. 1848. № 1. P. 1–13. https://doi.org/10.1088/1742-6596/1848/1/012160
11. Zou L.L., Xu W.C., Zhu J.M., Huang Y., Zhu H.J., Fan H.H. Parameter-free single-pass parallel metropolis light transport with sensor path visibility // Conference: ICIGP 2022: the 5th International Conference on Image and Graphics Processing. 2022. Beijing, China. Chapter 7. P. 363–368. https://doi.org/10.1145/3512388.3512441
12.Bashford-Rogers T., Santos L.P., Marnerides D., Debattista K. Ensemble metropolis light transport // ACM Transactions on Graphics. 2022. V. 41. № 1. P. 1–15. https://doi.org/10.1145/3472294
13.Schwandt T. High-quality illumination of virtual objects based on an environment estimation in mixed reality applications. Wiesbaden: Springer Fachmedien Wiesbaden, 2021. 152 p.
14. Šik M., Krivanek J. Survey of Markov chain Monte Carlo methods in light transport simulation // IEEE Transactions on Visualization and Computer Graphics. 2018. V.26. №4. P.1821–1840. https://doi.org/10.1109/TVCG.2018.2880455
15.Loubet G., Zeltner T., Holzschuch N., Jakob W. Slopespace integrals for specular next event estimation // ACM Transactions on Graphics. 2020. V. 39. № 6. P. 1–13. https://doi.org/10.1145/3414685.3417811
16. Georgiev I., Krivanek J., T. Davidovic T., Slusallek P. Light transport simulation with vertex connection and merging // ACM Trans. Graph. 2012. V. 31. № 6. P. 192:1–192:10. https://doi.org/10.1145/2366145.2366211
17. Вяткин С.И., Долговесов Б.С. Физически корректная визуализация функционально заданных объектов // Автометрия. 2022. Т. 58. № 3. С. 98–105. https://doi.org/10.15372/AUT20220311
Vyatkin S.I., Dolgovesov B.S. Physically based rendering of functionally defined objects // Optoelectronics, Instrumentation and Data Processing. 2022. V. 58. № 3. P.289–295. https://doi.org/10.3103/S8756699022030116
18. Вяткин С.И., Долговесов Б.С. Высокореалистичная визуализация каустик и шероховатых поверхностей // Программирование. 2022. № 5. С. 27–36. https://doi.org/10.31857/S0132347422050065
Vyatkin S. I., Dolgovesov B.S. Highly realistic visualization of caustics and rough surfaces // Programming and Computer Software. 2022. V. 48. № 5. P. 322–330. https://doi.org/10.1134/S0361768822050061
19. Vyatkin S.I. Polygonization method for functionally defined objects // International Journal of Automation, Control and Intelligent Systems. 2015. V. 1. № 1. P. 1–8.
20. Elvira V., Chouzenoux E., Akyildiz O.D., Martino L. Gradient-based adaptive importance samplers // Journal of the Franklin Institute. 2023. V. 360. № 1. P.1–26. https://doi.org/10.1016/j.jfranklin.2023.06.041
21. Schlick C. A customizable reflectance model for everyday rendering // In proceedings of four Eurographics Workshop on Rendering. 1993. P. 73–84.
ru