ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2025-92-08-72-81

УДК: 535.3

Synthesis of beam splitters for polarized radiation

For Russian citation (Opticheskii Zhurnal):

Котликов Е.Н., Лавровская Н.П., Тропин А.Н. Синтез светоделителей для поляризованного излучения // Оптический журнал. 2025. Т. 92. № 8. С. 72–81. http://doi.org/10.17586/1023-5086-2025-92-08-72-81

 

Kotlikov E.N. Lavrovskaya N.P., Tropin A.N. Synthesis of beam splitters for polarized radiation [in Russian] // Opticheskii Zhurnal. 2025. V. 92. № 8. P. 72–81. http://doi.org/10.17586/1023-5086-2025-92-08-72-81

For citation (Journal of Optical Technology):
-
Abstract:

Subject of the study. Methods of designing beam splitters for polarized radiation with independent reflection and transmission coefficients for different polarizations of incident radiation based on optical films. Aim of study. Development of a technique for the synthesis of beam splitters for polarized radiation using the FilmAnalysis program. Method. The formulation of the problem of designing multilayer thin-film coatings using an evaluation function with restrictions was used. Using numerical iterative methods of multi-parameter optimization, structures of multilayer thin-film systems for beam splitters were designed. Main results. A method of synthesis of beam splitters has been proposed for polarized radiation in the far infrared region of the spectrum 7–14 µm. Various structures of beam splitters for the infrared range of the spectrum are given. For the operating wavelength of the CO2 laser (10.6 microns), beam splitters have been synthesized, the difference in reflection and transmission was analyzed for S and P polarizations. Practical significance. The results obtained in the work can be used in the creation of optical and optoelectronic devices for such modern applications as polarization thermal imaging, polarization Fourier interferometry, and in optical paths of laser radiation.

Keywords:

synthesis (design), interference coatings, beam splitting coatings, infrared systems, polarization, transmission, reflection, absorption spectra

OCIS codes: 310.1620, 310.6860

References:

1. Scott Tyo J., Goldstein D.L., Chenault D.B., Shaw J.A. Review of passive imaging polarimetry for remote sensing applications // Applied Optics. 1 August 2006. V. 45. № 22. P. 5453–5469. https://doi.org/10.1364/AO.45.005453
2. Connor B., Carrie I., Craig R., Parsons J. Discriminative imaging using a LWIR polarimeter // Proc. SPIE 7113. Electro-Optical and Infrared Systems: Technology and Applications. 2008. V. 71130K. 2 October. https://doi.org/10.1117/12.802176
3. Aron Y., Gronau Y. Polarization in the LWIR: a method to improve target acquisition // Proc. of SPIE. 2005. V. 5783. P. 653–661. https://doi.org/10.1117/12.605316
4. Thériault J.-M., Fortin G., Lavoie H., Bouffard F., Lacasse P., Montembeault Y., Vallieres A., Farley V., Chamberland M. A new imaging FTS for LWIR polarization sensing: Principle and application // Fourier Transform Spectroscopy. OSA Technical Digest (CD) (Optica Publishing Group). 2011. Paper FTuD2. P. 217225. https://doi.org/10.1364/FTS.2011.FTuD2
5. Thériault J.-M., Puckrin E., Lavoie H., Francois B. Passive standoff detection of surface contaminants: A novel approach by differential polarization FTIR spectroscopy // International Journal of High Speed Electronics and Systems. 2008. № 8. P. 251–262. https://doi.org/10.1142/S0129156408005321
6. Stoyanova E., Levicharov P., Antonova K., Miloushev I., Tenev T. Design and elaboration of various multilayer beam splitters // J. of Phys.: Conference Series. 2023. V. 2436. P. 012006. https://doi.org/10.1088/1742-6596/2436/1/012006
7. Давыдов Б.Л. Отражение лазерного излучения от оптически анизотропного кристалла с сохранением поляризационной экстинкции // Оптический журнал. 2020. Т. 87. № 7. С. 65–72. http://doi.org/ 10.17586/1023-5086-2020-87-07-65-72
Davydov B.L. Laser beam reflection from an optically anisotropic crystal retaining polarization extinction [in Russian] // Journal of Optical Technology. 2020. V. 87. № 7. P. 434–439. https://doi.org/10.1364/JOT.87.000434
8. Li L., Thériault J.-M., Guo, Y. Infrared polarizing beam-splitters for the 7 to 13 mm spectral region // Proc. of SPIE. 2011. V. 8168. P. id.816811-1. https://doi.org/10.1117/12.896940
9. Tikhonravov A.V., Trubetskov M. K., Debell G.W. Application of the needle optimization technique to the design of optical coatings // Applied Optics. 1996. V. 35. № 28. P. 5493–5508. https://doi.org/10.1364/AO.35.005493
10. Котликов Е.Н., Новикова Ю.А., Юрковец Е.В. Синтез ахроматических светоделительных покрытий для фурье-спектрофотометров дальнего ИК диапазона спектра // Изв. вузов. Приборостроение. 2018. Т. 61. № 6. С. 521–529. https://doi.org/10.17586/0021-3454-2018-61-6-521-529
Kotlikov E.N., Novikova Yu.A., Yurkovets E.V. Synthesis of achromatic beam splitting coatings for Fourier spectrophotometers in the far infrared range of the spectrum // J. of Instrument Engineering. 2018. V. 61. № 6. P. 521–529. https://doi.org/10.17586/0021-3454-2018-61-6-521-529
11. Котликов Е.Н., Котликов А.Н., Юрковец Е.В. Программа анализа оптических спектров пленок «FilmAnalysis» // Свидетельство о государственной регистрации программы для ЭВМ № 2018611718 от 06.02.2017. РФ
Kotlikov E.N., Kotlikov A.N., Yurkovets E.V. Program for analyzing the optical spectra of films “FilmAnalysis” // Certificate of state registration of a computer program № 2018611718 dated 02/06/2017.RF12.Furman Sh.A., Tikhonravov A.V. Basics of optics of multilayers systems. Gif-sur-Yvette Cedex (France): Frontiers, 1992. 242 p.
13. Яковлев П.П., Мешков Б.Б. Проектирование интерференционных покрытий. М.: Машиностроение, 1987. 192 с.
Yakovlev P.P., Meshkov B.B. Design of interference coatings. Moscow: Mashinostroenie Publ., 1987. 192 p.
14. Котликов Е.Н., Иванов В.А., Новикова Ю.А., Тропин А.Н., Царев Ю.Н. Исследование оптических свойств пленок легированных фторидов // Известия ГУАП. Аэрокосмическое приборостроение. 2011. С. 117–122.
Kotlikov E.N., Ivanov V.A., Novikova Yu.A., Tropin A.N., Tsarev Yu.N. Study of the optical properties of doped fluoride films // Izvestia GUAP. Aerospace instrumentation. 2011. P. 117–122.
15. Минков И.М. Об определении глобального минимума в задаче синтеза тонкослойных покрытий // Оптика и спектроскопия. 1981. Т. 50. В. 4. С. 755–765.
Minkov I.M. On determining the global minimum in the problem of synthesizing thin-layer coatings // Optics and Spectroscopy. 1981. V. 50. № 4. P. 755–765.
16. Васильев Ф.П. Численные методы решения экстремальных задач. М.: Наука, 1980. 520 с.

Vasiliev F.P. Numerical methods for solving extremal problems. Moscow: Nauka, 1980. 520 p.
17. Евтушенко Ю.Г., Малкова В.У., Станевичюс А.А. Параллельный поиск глобального экстремума функций многих переменных // Ж. вычисл. матем. и матем. физ. 2009. Т. 49. № 2. С. 255–269.
Evtushenko Yu.G., Malkova V.U., Stanevichyus A.A. Parallel search for the global extremum of functions of several variables // Computational Mathematics and Mathematical Physics. 2009. V. 49. № 2. P. 255–269.
18. Абельсиитов Г.А., Голубев В.С., Гонтарь В.Г. и др. Технологические лазеры. Справочник. Т. 1 / Под общей ред. Абельсиитова Г.А. М.: Машиностроение, 1991. 432 с.
Abelsiitov G.A., Golubev V.S., Gontar V.G. et al. Technological lasers. Handbook. T. 1 / Ed. Abelsiitov G.A. Moscow: Mechanical Engineering, 1991. 432 p.