ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2025-92-09-44-54

УДК: 53.088.6

Improving the accuracy of surface plasmon resonance angle determination by apodizing the transmission function of an acousto-optical tunable filter

For Russian citation (Opticheskii Zhurnal):

Анисимов А.В., Хасанов И.Ш. Повышение точности определения угла поверхностного плазмонного резонанса аподизацией аппаратной функции акустооптического перестраиваемого фильтра // Оптический журнал. 2025. Т. 92. № 9. С. 44–54. http://doi.org/10.17586/1023-5086-2025-92-09-44-54

 

Anisimov A.V., Khsasnov I.Sh. Improving the accuracy of surface plasmon resonance angle determination by apodizing the transmission function of an acousto-optical tunable filter [in Russian] // Opticheskii Zhurnal. 2025. V. 92. № 9. P. 44–54. http://doi.org/10.17586/1023-5086-2025-92-09-44-54

For citation (Journal of Optical Technology):
-
Abstract:

Subject of the study. The influence of sidelobes relative to the central band of the transmission spectrum of an acousto-optical filter on the accuracy of surface plasmon resonance angle determination, in comparison to the case of monochromatic radiation. Aim of the study. To improve the accuracy of the surface plasmon resonance technique when broadband optical illumination is first passed through an acousto-optical tunable filter by reducing the systematic error in resonance angle determination compared to the case of monochromatic radiation. Method. An apodization technique is proposed to suppress the influence of secondary maxima of the acousto-optical tunable filter transmission function with a shape close to the square cardinal sine function due to the tuning of the central wavelength and mathematical post processing. Main results. The systematic error in determining the resonance angle in the surface plasmon resonance method is reduced by a factor of 1.5. Practical significance. Reducing the measurement error of the resonance angle in the surface plasmon resonance method will allow determining the optical constants of dielectric coatings with high accuracy, as well as analysis their depth distribution within thin layer. Achieving high accuracy and resolution will allow non-destructive studies of processes on subwavelength scales in the visible and infrared ranges, such as diffusion and adhesion of thin films of metals and dielectrics, which is important for applied problems in nanotechnology and materials science, as well as for sensor applications in biomedicine.

Keywords:

surface plasmon resonance, resonance angle, acousto-optical filter, transmission spectrum, apodization

Acknowledgements:

the research was conducted as part of the state assignment of the Ministry of Science and Higher Education of the Russian Federation (project № FFNS-2025-0007). The results were obtained using the equipment of the Center for Collective Use of the Scientific and Technological Center of Unique Instrumentation of the RAS.

OCIS codes: 240.6680, 230.1040, 310.6860

References:
  1. Gordon J.G. Surface plasmon spectroscopy for the optical characterization of thin metal films and their surfaces // Opt. Characterization Techniq. for Semiconductor Technol. SPIE, 1981. V. 0276. P. 96–100. https://doi.org/10.1117/12.931692
  2. Del Rosso T., Sánchez J.E.H., Carvalho R.D.S., et al. Accurate and simultaneous measurement of thickness and refractive index of thermally evaporated thin organic films by surface plasmon resonance spectroscopy // Opt. Exp. 2014. V. 22. № 16. P. 18914–18923. https://doi.org/10.1364/OE.22.018914
  3. Rheinberger T., Ohm D., Zhumaev U.E., et al. Extending surface plasmon resonance spectroscopy to platinum surfaces // Electrochim. Acta. 2019. V. 314. P. 96–101. https://doi.org/10.1016/j.electacta.2019.05.063
  4. Yesudasu V., Pradhan H.S., Pandya R.J. Recent progress in surface plasmon resonance based sensors: A comprehensive review // Heliyon. 2021. V. 7. № 3. P. e06321. https://doi.org/10.1016/j.heliyon.2021.e06321
  5. Anisimov A.V., Khasanov I.S. Algorithm for optical characterization of dielectric gradient index nanofilm by surface plasmon resonance spectroscopy // J. Phys.: Conf. Ser. IOP Publ. 2021. V. 2091. № 1. P. 012067. https://doi.org/10.1088/1742-6596/2091/1/012067
  6. Shvart︠s︡burg A.B., Maradudin A.A. Waves in gradient metamaterials. Singapore: World Scientific, 2013. 328 p.
  7. Simka H., Shankar S., Duran C., et al. Fundamentals of Cu/barrier-layer adhesion in microelectronic processing // MRS Online Proc. Libr. 2005. V. 863. № 1. P. B9.2. https://doi.org/10.1557/PROC-863-B9.2
  8. Neelakandan S., Chua P.K., Yeo K.S., et al. Rapid thermal annealing to significantly reduce delamination of silver thin film sputtered on silicon dioxide surface // 2016 IEEE 18th Electronics Packaging Technol. Conf. (EPTC). 2016. P. 264–265. https://doi.org/10.1109/EPTC.2016.7861484
  9. Хасанов И.Ш. Диагностика тонких градиентных диэлектрических покрытий с помощью микроскопии поверхностного плазмонного резонанса и метода фантомных изображений // Поверхность. Рентгеновские, синхротронные и нейтронные исследования. 2022. № 11. C. 29–38. https://doi.org/10.31857/S1028096022090060

       Khasanov I.Sh. Diagnostics of thin gradient dielectric coatings by surface plasmon resonance microscopy and ghost imaging // J. Surface Investigation: X-ray, Synchrotron and Neutron Techniques. 2022. V. 16. № 6. P. 951–959. https://doi.org/10.1134/S1027451022050068

  1. Patil P.O., Pandey G.R., Patil A.G., et al. Graphene-based nanocomposites for sensitivity enhancement of surface plasmon resonance sensor for biological and chemical sensing: A review // Biosens. Bioelectron. 2019. V. 139. P. 111324. https://doi.org/10.1016/j.bios.2019.111324
  2. Пшенова А.С., Клюкин Д.А., Сидоров А.И. и др. Пористые стекла с наноразмерными частицами серебра как чувствительный материал для сенсоров показателя преломления аналитов // Оптический журнал. 2016. Т. 83. С. 64–67.

       Pshenova A.S., Klyukin D.A., Sidorov A.I., et al. Porous glasses with silver nanoparticles as the sensitive material for sensors to measure the index of refraction of analytes // J. Opt. Technol. 2016. V. 83. P. 438. https://doi.org/10.1364/JOT.83.000438

  1. Abayzeed S.A., Smith R.J., Webb K.F., et al. Responsivity of the differential-intensity surface plasmon resonance instrument // Sens. Actuators B: Chem. 2016. V. 235. P. 627–635. https://doi.org/10.1016/j.snb.2016.05.117
  2. Khasanov I.S., Knyazev B.A., Lobastov S.A., et al. Optical characterization of thin films by surface plasmon resonance spectroscopy using an acousto-optic tunable filter // Materials. 2023. V. 16. № 5. P. 1820. https://doi.org/10.3390/ma16051820
  3. Анисимов А.В., Лобастов С.А., Хасанов И.Ш. Алгоритм определения оптического профиля тонких градиентных пленок методом поверхностного плазмонного резонанса // Ученые записки физического факультета Московского университета. 2023. № 6. C. 2360401.

       Anisimov A.V., Lobastov S.A., Khasanov I.S. Algorithm for determining the optical profile of thin gradient-index films via surface plasmon resonance [in Russian] // Uchenye Zapiski Fizicheskogo Fakulteta MGU. 2023. № 6. P. 2360401.

  1. Kupreychik M., Chizhikov A., Yushkov K.B. Biaxial AOTF transfer functions for spatial image filtering // Advanced Opt. Imaging Technol. V. SPIE, 2022. P. 20. https://doi.org/10.1117/12.2641893
  2. Мачихин А.С., Пожар В.Э. Передача изображений при широкоугольном акустооптическом взаимодействии // Квант. электрон. 2010. Т. 40. № 9. С. 837–841.

       Machikhin A.S., Pozhar V.E. Image transformation caused by wide-angle acousto-optic interaction // Quantum Electron. 2010. V. 40. P. 837–841. https://doi.org/10.1070/QE2010v040n09ABEH014371

  1. Wang X., Zeng Y., Zhou J., et al. Ultrafast surface plasmon resonance imaging sensor via the high-precision four-parameter-based spectral curve readjusting method // Anal. Chem. American Chem. Soc. 2021. V. 93. № 2. P. 828–833. https://doi.org/10.1021/acs.analchem.0c03347
  2. Owega S., Poitras D. Local similarity matching algorithm for determining SPR angle in surface plasmon resonance sensors // Sens. Actuators B: Chem. 2007. V. 123. № 1. P. 35–41. https://doi.org/10.1016/j.snb.2006.07.018
  3. Roy D. Surface plasmon resonance spectroscopy of dielectric coated gold and silver films on supporting metal layers: Reflectivity formulas in the Kretschmann formalism // Appl. Spectrosc. SAGE Publications Ltd STM, 2001. V. 55. № 8. P. 1046–1052. https://doi.org/10.1366/0003702011952947
  4. Batista J.C.S., Costa M.V.S., Oliveira L.C. Smart noise reduction in SPR sensors response using multiple-ANN design // IEEE Sensors J. 2021. V. 21. № 4. P. 4517–4524. https://doi.org/10.1109/JSEN.2020.3035441
  5. Zhan S., Wang X., Liu Y. Fast centroid algorithm for determining the surface plasmon resonance angle using the fixed-boundary method // Meas. Sci. Technol. 2010. V. 22. № 2. P. 025201. https://doi.org/10.1088/0957-0233/22/2/025201
  6. Junfeng D., Li-hui F. Application of dynamic baseline adjustment based on swarm intelligence optimization in the signal processing of fiber SPR sensor // Optik. 2023. V. 273. P. 170470. https://doi.org/10.1016/j.ijleo.2022.170470
  7. Qin L.S., Chen X., Zhang L.L., et al. Design, fabrication and testing of gain SPR sensor chip // J. Phys.: Conf. Ser. IOP Publ., 2019. V. 1209. № 1. P. 012006. https://doi.org/10.1088/1742-6596/1209/1/012006
  8. Vinogradov A.P., Dorofeenko A.V., Pukhov A.A., et al. Exciting surface plasmon polaritons in the Kretschmann configuration by a light beam // Phys. Rev. B. 2018. V. 97. № 23. P. 235407. https://doi.org/10.1103/PhysRevB.97.235407
  9. Surface plasmon resonance based sensors. Ed. Homola J. Berlin Heidelberg: Springer-Verlag, 2006. 252 p. ISBN-13 978-3-540-33918-2
  10. Батшев В.И., Мачихин А.С., Козлов А.Б. и др. Перестраиваемый акустооптический фильтр для спектральных диапазонов 450…900 нм и 900…1700 нм // Радиотехника и электроника. 2020. Т. 65. № 7. С. 667–673. https://doi.org/ 10.31857/s0033849420070025

       Batshev V.I., Machikhin A.S., Kozlov A.B., et al. Tunable acousto-optic filter for the 450–900 and 900–1700 nm spectral range // J. Commun. Technol. Electron. 2020. V. 65. № 7. P. 800–805. https://doi.org/10.1134/S1064226920070025

  1. Польщикова О.В., Горевой А.В., Мачихин А.С. Экспериментальное исследование влияния функции пропускания перестраиваемого акустооптического фильтра на характеристики интерференционной картины во внеосевой схеме цифровой голографии // Светотехника. 2022. № 5. С. 38–43.

       Polschikova O.V., Gorevoy A.V., Machikhin A.S. Experimental study of the influence of the transmission function of acousto-optic tuneable filter on the characteristics of the interference pattern in off-axis digital holography // Light & Eng. 2022. P. 43–50. https://doi.org/10.33383/2022-083

  1. Каталог цветного стекла. М.: Машиностроение, 1967. 62 с.

       Catalog of colored glass [in Russian]. Moscow: ꞌꞌMashinostroenieꞌꞌ Publ., 1967. 62 p.