ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2026-93-01-50-58

УДК: 535.243.25

Investigation of stray light influence in spectrometers on precision of fiber-optic temperature sensor

For Russian citation (Opticheskii Zhurnal):

Кабиев Р.А., Грибаев А.И., Мирошниченко Г.П. Влияние рассеянного излучения в спектрометрах на точностные характеристики волоконно-оптического датчика температуры // Оптический журнал. 2026. Т. 93. № 1. С. 50–58. http://doi.org/10.17586/1023-5086-2026-93-01-50-58

 

Kabiev R.A., Gribaev A.I., Miroshnichenko G.P. Investigation of stray light influence in spectrometers on precision of fiber-optic temperature sensor [in Russian] // Opticheskii Zhurnal. 2026. V. 93. № 1. P. 50–58. http://doi.org/10.17586/1023-5086-2026-93-01-50-58

For citation (Journal of Optical Technology):
-
Abstract:

Subject of study. Parasitic radiation caused by reflection and scattering on the internal surfaces and elements of Hamamatsu C12880MA mini-spectrometers. Aim of study. Reduction of the component of the measurement error of a fiber-optic temperature sensor, caused by the scattering of radiation outside the working spectral range of the spectrometer, by means of introducing an infrared filter into the pyrometer’s optical system. Method. The optical radiation of the СИ10-300 lamp in the temperature range of 1200–2300 K was registered in the presence and absence of СЗС25 colored glass in the sensor’s optical scheme. The analysis of the results included a comparison of the experimental data with the spectral characteristics of blackbody radiation. Temperature determination was performed by the method of spectral pyrometry in the 600–700 nm range. Main results. The presence of a parasitic signal in the 300–500 nm wavelength range, arising due to the scattering of radiation at wavelengths greater than 800 nm inside the device, was experimentally confirmed. A method for determining distortions in the spectrometer’s response, applied to analyze the contribution of scattered radiation in different spectral regions, is presented. A quantitative comparison of the magnitude of the parasitic signal in the sensor channels was performed. The introduction of an infrared filter into the optical system led to a substantial weakening of the parasitic radiation at lamp temperatures of 1200–1600 K and a reduction in the measurement error from 8% to 1.5%. Practical significance. The research results were used to improve the accuracy characteristics of the spectral fiber-optic temperature sensor.

Keywords:

spectral pyrometry, fiber optic sensor, spectrometer, blackbody, stray light, spectrum distortions

Acknowledgements:

the research was carried out within the state assignment of Ministry of Science and Higher Education of the Russian Federation (project № FSER-2024-0006)

OCIS codes: 290.2648, 300.6190, 280.6780, 290.6815, 280.4991, 120.1740

References:

1.  Mekhrengin M., Miroshnichenko G., Chistiakov A., et al. Combination of soot pyrometry and C₂* emission spectroscopy for temperature measurement during combustion of hydrocarbons // Measurement. 2020. V. 166. P. 108242. https://doi.org/10.1016/j.measurement.2020.108242

2.  Fu T., Tan P., Pang C., et al. Fast fiber-optic multi-wavelength pyrometer // Review of Scientific Instruments. 2011. V. 82 № 6. P. 064902. https://doi.org/10.1063/1.3596567

3. Магунов А.Н. Измерение температуры объектов с неизвестной излучательной способностью методом спектральной пирометрии // Научное приборостроение. 2010. Т. 20. № 3. С. 22–26.

Magunov A.N. Measurement of temperature of objects with unknown emissivity by the spectral pyrometry method [in Russian] // Nauchnoe Priborostroenie. 2010. V. 20. № 3. P. 22–26.

4.  Магунов А.Н. Спектральная пирометрия. М.: Физматлит, 2012. 248 с.

Magunov A.N. Spectral pyrometry [in Russian]. Moscow: Fizmatlit Publ., 2012. 248 p.

5.  Mekhrengin M.V., Meshkovskii I.K., Tashkinov V.A., et al. Multispectral pyrometer for high temperature measurements inside combustion chamber of gas turbine engines // Measurement. 2019. V. 139. P. 355–360. https://doi.org/10.1016/j.measurement.2019.02.084

6. Moreno-Pacheco L.A., Sánchez-López F., Barbosa-Saldaña J.G., et al. Design and numerical analysis of an annular combustion chamber // Fluids. 2024. V. 9, № 7. P. 161. https://doi.org/10.3390/fluids9070161

7. Сафиуллин А.Р., Калугин Е.Э., Гончаров Д.Б и др. Разработка и исследование спектрального датчика для мониторинга тепловых процессов в камерах сгорания газотурбинных двигателей // Сб. тез. докл. Конгресса молодых ученых. Электронное издание. 2022. URL: https://kmu.itmo.ru/digests/article/8254 Safiullin A.R., Kalugin E.E., Goncharov D.B., et al. Development and study of a spectral sensor for monitoring thermal processes in gas turbine combustion chambers [in Russian] // Proc. Congress of Young Scientists. Electronic edition. 2022. Available at: https://kmu.itmo.ru/digests/article/8254

8. Hotra O., Firago V., Levkovich N., et al. Investigation of the possibility of using microspectrometers based on CMOS photodiode arrays in small-sized devices for optical diagnostics // Sensors. 2022. V. 22. № 11. P. 4195. https://doi.org/10.3390/s22114195

9. Jechow A., Bumberger J., Palm B., et al. Characterizing and implementing the Hamamatsu C12880MA mini-spectrometer for near-surface reflectance measurements of inland waters // Sensors. 2024. V. 24. № 19. P. 6445. https://doi.org/10.3390/s24196445

10.  Kantzas E.P., McGonigle A.J.S., Bryant R.G. Comparison of low-cost miniature spectrometers for volcanic SO₂ emission measurements // Sensors. 2009. V. 9. № 5. P. 3256–3268. https://doi.org/10.3390/s90503256

11. Nehir M., Frank C., Aßmann S., et al. Improving optical measurements: Non-linearity compensation of compact charge-coupled device (CCD) spectrometers // Sensors. 2019. V. 19. № 12. P. 2833. https://doi.org/10.3390/s19122833

12. Lenhard K., Baumgartner A., Schwarzmaier T. Independent laboratory characterization of NEO HySpex imaging spectrometers VNIR-1600 and SWIR-320m-e // IEEE Trans. Geoscience and Remote Sensing. 2015. V. 53. № 4. P. 1828–1841. https://doi.org/10.1109/TGRS.2014.2349737

13.  Schaepman M.E., Dangel S. Solid laboratory calibration of a nonimaging spectroradiometer // Appl. Opt. 2000. V. 39. № 21. P. 3754. https://doi.org/10.1364/AO.39.003754

14.  Xia G., Liu Q., Zhou H., et al. A non-linearity correction method of charge-coupled device array spectrometer / Eds. Han S., Ellis J.D., Guo J., Guo Y. // Proc. SPIE. Beijing, China. 2015. P. 96770J. https://doi.org/10.1117/12.2197725

15.  Мухин Е.Е., Раздобарин Г.Т., Семёнов В.В. и др. Многоканальный дифракционный спектрометр с малым уровнем рассеянного света // Оптический журнал. 2003. Т. 70. № 1. С. 54–56.

Mukhin E.E., Razdobarin G.T., Semenov V.V., et al. Multichannel diffraction spectrometer with a low scattered-light level // J. Opt. Technol. 2003. V. 70. № 1. P. 45–47. https://doi.org/10.1364/JOT.70.000045

16.  Zong Y., Brown S.W., Johnson B.C., et al. Simple spectral stray light correction method for array spectroradiometers // Appl. Opt. 2006. V. 45. № 6. P. 1111. https://doi.org/10.1364/AO.45.001111

17. Фираго В.А., Левкович Н.В., Шулико К.И. Спектрофотометры диффузного отражения на основе мини-спектрометров C12880MA и C11708MA Hamamatsu // Приборы и методы измерений. 2022. Т. 13. № 2. С. 93–104. https://doi.org/10.21122/2220-9506-2022-13-2-93-104

Firago V.A., Levkovich N.V., Shuliko K.I. Diffuse reflectance spectrophotometers based on C12880MA and C11708MA mini-spectrometers Hamamatsu // Devices and Methods of Measurements. 2022. V. 13. № 2. P. 93–104. https://doi.org/10.21122/2220-9506-2022-13-2-93-104

18.  Fu T., Duan M., Liu J., et al. Spectral stray light effect on high-temperature measurements using a near-infrared multi-wavelength pyrometer // Infrared Phys. & Technol. 2014. V. 67. P. 590–595. https://doi.org/10.1016/j.infrared.2014.10.004

19. ГОСТ Р 8.790–2012. ГСИ. Лампы температурные. Методика поверки и калибровки. Введ. 2014.

GOST R 8.790–2012. GSI. Temperature lamps. Methods of verification and calibration [in Russian]. 2014.

20. Larrabee R.D. Spectral emissivity of tungsten // JOSA. 1959. V. 49. № 6. P. 619. https://doi.org/10.1364/JOSA.49.000619