ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2026-93-01-59-68

УДК: 535.326, 535.327, 535-15

An approach to calculating and optimizing the parameters of a laminated gradient-index lens when working with polychromatic radiation under conditions of temperature fluctuation

For Russian citation (Opticheskii Zhurnal):

Левин И.А., Грейсух Г.И. Подход к расчету и оптимизации параметров ламинированной градиентной линзы при работе с полихроматическим излучением в условиях перепада температур // Оптический журнал. 2026. Т. 93. № 1. С. 59–68. http://doi.org/10.17586/1023-5086-2026-93-01-59-68

 

Levin I.A., Greisukh G.I. An approach to calculating and optimizing the parameters of a laminated gradient-index lens when working with polychromatic radiation under conditions of temperature fluctuation [in Russian] // Opticheskii Zhurnal. 2026. V. 93. № 1. P. 59–68. http://doi.org/10.17586/1023-5086-2026-93-01-59-68

For citation (Journal of Optical Technology):
-
Abstract:

Subject of the study. Radial-gradient-index optical element as part of an infinitely thin lens model. Purpose of the study. Development of a method for calculating and optimizing the parameters of a laminated radial gradient lens as part of an infinitely thin lens model and a method for optimizing the calculated values during automatic aberration correction of an optical system operating in the mid- and long-wavelength infrared spectral ranges under temperature fluctuations. The research method. Theoretical analysis and mathematical modeling using geometric optics equations. The main results. The methodology of calculation of the values of the characteristic of a radial-gradient-index lens is proposed. The calculated values of the characteristic of a radial-gradient-index lens, together with other optical elements, ensure the constancy of the optical power of the infinitely thin lens model at three wavelengths of the spectral range and at the edge values of the temperature range. The macro based on formulas of calculation of the parameters of a radial-gradient-index lens is presented. The macro integrated into the optimization function of a commercial optical design program, allows automatic correction of aberrations of the optical system with a radial-gradient-index lens when working with polychromatic radiation under conditions of temperature fluctuation. The efficiency of the macro is demonstrated using the example of automatic correction of aberrations on the axis of the optical system with a radial-gradient-index lens when moving from an infinitely thin lens model to elements of finite thickness. Practical significance. The presented methodology makes it possible to obtain the design parameters of the initial optical lay out at the initial stage of designing an optical system with a radial-gradient-index lens.

Keywords:

infrared radiation, radial-gradient-index lens, passive athermalization

Acknowledgements:

the investigation was carried out as part of the implementation of the state task of the Ministry of Education and Science of the Russian Federation № FSGS-2024-0005.

OCIS codes: 080.2740, 110.2760, 110.3080, 120.6810, 160.4670

References:

1. Gibson D., Bayya S., Nguyen V., et al. IR GRIN optics for imaging // Proc. SPIE. 2016. V. 9822. P. 98220R (9 p). https://doi.org/10.1117/12.2224094

2.  Gibson D., Bayya S., Nguyen V., et al. GRIN optics for multispectral infrared imaging // Proc. SPIE. 2015. V. 9451. P. 94511P (7 p). https://doi.org/10.1117/12.2177136

3.  Bayya S., Gibson D., Nuygen V., et al. Design and fabrication of multispectral optics using expanded glass map // Proc. SPIE. 2015. V. 9451. P. 94511N (7 p). https://doi.org/10.1117/12.2177289

4.  Beadie G., Stover E., Gibson D. Temperature‐dependent dispersion fitting for a recent infrared glass catalog // Proc. SPIE. 2019. V. 10998. P. 1099804 (6 p). https://doi.org/10.1117/12.2518494

5.  Jamieson T.H. Athermalization of optical instruments from the optomechanical viewpoint // Proc. SPIE. 1992. V. 10265. P. 131–159. http://doi.org/10.1117/12.61105

6.  Ford E.H. Active temperature compensation of an infrared zoom objective // Proc. SPIE. 1997. V. 3129. P. 138–143. http://doi.org/10.1117/12.279085

7. Медведев А.В., Гринкевич А.В., Князева С.Н. Атермализация объективов прицельно-наблюдательных комплексов как средство обеспечения жизнедеятельности объектов БТВТ // Фотоника. 2016. Т. 56. № 2. С. 94–109.

Medvedev A.V., Grinkevich A.V., Knyazeva S.N.  Athermalization of objectives of sighting and observation complexes as the means of functioning support of the facilities of Armament of Armored Force Vehicles (AAFV) // Photonics Russia. 2016. V. 56. № 2. P. 94–109.

8.  Тягур В.М., Кучеренко О.К., Муравьев А.В. Пассивная оптическая атермализация инфракрасного трехлинзового ахромата // Оптический журнал. 2014. Т. 81. № 4. С. 42–47.

Tyagur V.M., Kucherenko O.K., Murav’ev A.V. Passive optical athermalization of an IR three-lens achromat // J. Opt. Technol. 2014. V. 81. № 4. P. 199–203. http://doi.org/10.1364/JOT.81.000199

9.  Greisukh G.I., Levin I.A, Ezhov E.G. Design of ultra-high-aperture dual-range athermal infrared objectives // Photonics. 2022. V. 9. № 10. P. 742. https://doi.org/10.3390/photonics9100742

10. Грейсух Г.И., Левин И.А., Ежов Е.Г. Сверхсветосильный двухдиапазонный градиентно-дифракционный инфракрасный объектив // Оптический журнал. 2024. Т. 91. № 11. С. 34–42. http://doi.org/10.17586/1023-5086-2024-91-11-34-42

Greisukh G.I., Levin I.A, Ezhov E.G. Ultrahigh-aperture dual-band gradient index-diffractive infrared objective // J. Opt. Technol. 2024. V. 91. № 11. P. 731–736. http://doi.org/10.1364/JOT.91.000731

11. Электронный ресурс URL: https://www.ansys.com/products/optics/ansys-zemax-opticstudio (Ansys Zemax Optic: Studio Comprehensive Optical Design Software).

Electronic resource URL: https://www.ansys.com/products/optics/ansys-zemax-opticstudio (Ansys Zemax Optic: Studio Comprehensive Optical Design Software).

12. Электронный ресурс URL: https://www.synopsys.com/optical-solutions/codev (CODE V Optical Design Software).

Electronic resource URL: https://www.synopsys.com/optical-solutions/codev (CODE V Optical Design Software).

13. Greisukh G.I., Bobrov S.T., Stepanov S.A. Optics of diffractive and gradient‐index elements and systems. Bellingham: SPIE Press, 1997. 414 p.

14.  Corsetti J.A., Gardner L.R., Schmidt G.R., et al. Athermalization of polymer radial gradient-index singlets // Opt. Eng. 2013. V. 52. № 11. P. 112104 (6 p). http://doi.org/10.1117/1.OE.52.11.112104