ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2026-93-01-95-105

УДК: 621.372.81.09

Input–output optical couplers for ion-exchanged planar waveguides based on volume Bragg gratings in photo-thermo-refractive glass

For Russian citation (Opticheskii Zhurnal):

Попова В.А., Никоноров Н.В., Алексеев А.М., Алексеев Е.М. Элементы ввода–вывода излучения в ионообменные оптические волноводы на основе объемных брэгговских решеток в фототерморефрактивном стекле // Оптический журнал. 2026. Т. 93. № 1. С. 95–105. http://doi.org/10.17586/1023-5086-2026-93-01-95-105

 

Popova V.A., Nikonorov N.V., Alexeev A.M., Alexeev E.M. Input–output optical couplers for ion-exchanged planar waveguides based on volume Bragg gratings in photo-thermo-refractive glass [in Russian] // Opticheskii Zhurnal. 2026. V. 93. № 1. P. 95–105. http://doi.org/10.17586/1023-5086-2026-93-01-95-105

For citation (Journal of Optical Technology):
-
Abstract:

Subject of study. Ion-exchange optical waveguides and Bragg volume gratings in photo-thermo-refractive glass. Aim of Study. Creation of input/output couplers in planar ion-exchange waveguides based on volume Bragg gratings in photo-thermo-refractive glass. Method. Firstly, photo-thermo-induced crystallization is used. A volume Bragg grating is recorded with ultraviolet laser light and subsequent thermal treatment at a temperature of 500 °C. Secondly, ion exchange in an AgNO3 salt melt at temperature 350 °C is performed. It increases the surface refractive index and forms a planar waveguide while preserving the Bragg grating. Main Results. Monolithic combination of a planar waveguide and a volume Bragg grating is acquired. Volume Bragg grating can function both as an input and output element in the waveguide. Practical Significance. Photo-thermo-refractive glass enables the integration of photo-thermo-induced crystallization technology with ion exchange. The fabrication of input/output couplers and optical waveguide structures within a single material supports an approach that minimizes the range of required optical materials while enhancing functionality and reducing the number of bulky external optical elements.

Keywords:

photo-thermo-refractive glass, volume Bragg grating, ion exchange, planar waveguide, hologram

OCIS codes: 160.2750, 160.2900, 160.3130, 050.7330

References:

1.  Hunsperger R.G., Hunsperger R.G. Waveguide input and output couplers / in the book Integrated Optics: Theory and Technology. New York: Springer, 2009. P. 129–152. https://doi.org/10.1007/b98730_7

2.  Taillaert D., Van Laere F., Ayr M., et al. Grating couplers for coupling between optical fibers and nanophotonic waveguides // Japan. J. Appl. Phys. 2006. V. 45. № 8R. P. 6071. http://dx.doi.org/10.1143/JJAP.45.6071

3.  Ramos B.L., Choquette S.J., Fell N.F. Embossable grating couplers for planar waveguide optical sensors // Analyt. Chem. 1996. V. 68. № 7. P. 1245–1249. https://doi.org/10.1021/ac950579x

4.   Lukosz W., Nellen Ph.M., Stamm Ch., et al. Output grating couplers on planar waveguides as integrated optical chemical sensors // Sensors and Actuators B: Chemical. 1990. V. 1. № 16. P. 585–588. https://doi.org/10.1016/0925–4005(90)80278–8

5.   Heuberger K., Lukosz W. Embossing technique for fabricating surface relief gratings on hard oxide waveguides // Appl. Opt. 1986. V. 25. № 9. P. 1499–1504. https://doi.org/10.1364/AO.25.001499

6.  Никоноров Н.В., Иванов С.А., Мусихина Е.С. Фототерморефрактивное стекло — перспективный материал фотоники. Обзор // Оптический журнал. 2023. Т. 90. № 3. С. 68–100. http://doi.org/10.17586/1023-5086-2023-90-03-68-100

Nikonorov N.V., Ivanov S.A., Musikhina E.S. Photo-thermo-refractive glass: A promising photonics material // J. Opt. Technol. 2023. V. 90. № 3. P. 142–160. https://doi.org/10.1364/JOT.90.000142

7. Nikonorov N., Ivanov S., Dubrovin V., et al. New photo–thermo–refractive glasses for holographic optical elements: Properties and applications // Holographic Mater. and Opt. Systems. 2017. V. 435. P. 501–520. https://doi.org/10.5772/66116

8.  Lumeau J., Zanotto E.D. A review of the photo-thermal mechanism and crystallization of photo-thermo-refractive (PTR) glass // Intern. Mater. Rev. 2017. V. 62. № 6. P. 348–366. https://doi.org/10.1080/09506608.2016.1264132

9.  Efimov O.M., Glebov L.B., Glebova L.N., et al. High-efficiency Bragg gratings in photothermorefractive glass // Appl. Opt. 1999. V. 38. № 4. P. 619–627. https://doi.org/10.1364/ao.38.000619

10. Glebov L. Fluorinated silicate glass for conventional and holographic optical elements // Window and Dome Technologies and Materials X. SPIE, 2007. V. 6545. P. 67–75. https://doi.org/10.1364/ao.38.000619

11.  Sgibnev Y.M., Nikonorov N.V., Vasilev V.N., et al. Optical gradient waveguides in photo-thermo-refractive glass formed by ion exchange method // J. Lightwave Technol. 2015. V. 33. № 17. P. 3730–3735. https://doi.org/10.1117/12.720928

12.  White J.M., Heidrich P.F. Optical waveguide refractive index profiles determined from measurement of mode indices: A simple analysis // Appl. Opt. 1976. V. 15. № 1. P. 151–155. https://doi.org/10.1364/AO.15.000151

13. Глебов Л.Б., Никоноров Н.В., Панышева Е.И. и др Мультихромные стекла — новые материалы для записи объемных фазовых голограмм // Доклады Академии наук. 1990. Т. 314. № 4. С. 849–853.

Glebov L.B., Nikonorov N.V., Panysheva E.I., et al. Multichromic glasses — new materials for recording volume phase holograms [in Russian] // Reports of the Academy of Sciences. 1990. V. 314. № 4. P. 849–853.

14.  Sgibnev Y., Nikonorov N., Ignatiev A., et al. Photostructurable photo-thermo-refractive glass // Opt. Exp. 2016. V. 24. № 5. P. 4563–4572. https://doi.org/10.1364/OE.24.004563