DOI: 10.17586/1023-5086-2026-93-02-13-20
УДК: 666.3: 628.9.037
Saturation effect of the luminescence lifetime decay of the excited level of the Yb3+ ion in optical ceramics made of yttrium oxide with the addition of zirconium oxide
Осипов В.В., Орлов А.Н., Лисенков В.В., Шитов В.А., Максимов Р.Н. Эффект насыщения времени затухания люминесценции возбуждённого уровня иона Yb3+ в оптической керамике из оксида иттрия с добавлением оксида циркония // Оптический журнал. 2026. Т. 93. № 2. С. 13–20. http://doi.org/10.17586/1023-5086-2026-93-02-13-20
Osipov V.V., Orlov A.N., Lisenkov V.V., Shitov V.A., Maksimov R.N. Saturation effect of the luminescence lifetime decay of the excited level of the Yb3+ ion in optical ceramics made of yttrium oxide with the addition of zirconium oxide [in Russian] // Opticheskii Zhurnal. 2026. V. 93. № 2. P. 13–20. http://doi.org/10.17586/1023-5086-2026-93-02-13-20
Subject of study. Effect of Yb:Y2O3 + ZrO2 optical ceramics thickness on the decay kinetics of ytterbium ion Yb3+ excited level 2F5/2 luminescence. The purpose. Establishing a pattern in the dependence of the luinescence lifetime of the excited level of the Yb3+ ion in optical ceramics made of yttrium oxide with the addition of zirconium oxide on its thickness. Method. For experimental studies of the thickness effect of transparent ceramics on its photoluminescence kinetics, a wedge-shaped sample was selected, which significantly simplifies the study. The theoretical substantiation of the obtained experimental data is carried out on the basis of the Biberman–Holstein integro-differential equation. Main results. The effect of photoluminescence decay time saturation of 5Yb:Y2O3 + ZrO2 optical ceramics depending on its thickness has been experimentally detected. It is shown that at a sample thickness of 1.2 mm, the saturation of the radiation decay time is achieved, which is 1270 µs. A qualitative explanation of the radiation saturation effect is presented based on the Biberman–Holstein integro-differential equation. Practical significance. The luminescence decay time saturation of the excited level 2F5/2 of the ytterbium Yb3+ ion in 5Yb:Y2O3 + ZrO2 optical ceramics depending on its thickness was reveald. To obtain high values of the lasing efficiency on 5Yb:Y2O3 + ZrO2 optical ceramics, it is recommended to select samples with thicknesses that do not lead to saturation of the luminescence decay time.
radiation trapping, luminescence lifetime, photoluminescence, decay kinetics
Acknowledgements:the work was supported by the grant of the Russian Science Foundation № 24-19-20074, https://rscf.ru/project/24-19-20074/, with the financial support of the Government of the Sverdlovsk Region.
OCIS codes: 300.0300
References:- Krankel C. Rare-earth-doped sesquioxides for diode-pumped high-power lasers in the 1-, 2-, and 3-μm spectral range // J. of selected topics in quantum electronics. 2015. V. 2 № 1. P. 250. https://doi.org/10.1109/jstqe.2014.2346618
- Liu W., Jin L., Wang S. The absorption and emission properties of highly transparent ZrO2-doped Yb3+: Y2O3 ceramics // J. Am. Ceram. Soc. 2019. V. 10 № 9. P. 5020. https://doi.org/10.1111/jace.16476
- Liu Z., Ikesue A., Li J. Research progress and prospects of rare-earth doped sesquioxide laser ceramics // J. Eur. Ceram. Soc. 2021. V. 41. № 11. P. 3895. https://doi.org/10.1016/j.jeurceramsoc.2021.02.026
- Kühn H., Fredrich-Thornton S.T., Krankel K., Peters R., Petermann K. Model for the calculation of radiation trapping and description of the pinhole method // Opt. Lett. 2007. V. 32. №13. P. 1908. https://doi.org/10.1364/OL.32.001908
- Toci G., Alderighi D., Pirri A., Vannini M. Lifetime measurements with the pinhole method in presence of radiation trapping: II—Application to Yb3+ doped ceramics and crystals // Appl. Phys. B. 2012. V. 106. P. 73–79. https://doi.org/10.1007/s00340-011-4632-y
- Курильчик С.В., Кисель В.Э., Кулешов Н.В., Павлюк А.А. Измерение времени затухания люминесценции ионов Yb3+ кристаллах Li2Zn2(MoO4)3 с использованием метода, устраняющего влияние перепоглощения излучения // Приборы и методы измерений. 2011. Т. 2. № 1. С. 59–63.
Kurilchik S.V., Kisel V.E., Kuleshov N.V., Pavlyuk A.A. Measurement of the luminescence decay time of Yb3+ ions in Li2Zn2(MoO4)3 crystals using a method that eliminates the influence of radiation reabsorption // Instruments and methods of measurements. 2011. V. 2. № 1. P. 59–63.
- Осипов В.В., Платонов В.В., Шитов В.А., Максимов Р.Н. Высокопрозрачная керамика, приготовленная на основе нанопорошков, синтезированных в лазерном факеле. Часть 1. Особенности получения // Фотоника. 2017. Т. 67. С. 52–70. https://doi.org/10.22184/1993-7296.20167.7.52.70
Osipov V.V., Platonov V.V., Shitov V.A., Maksimov R.N. Highl- transparent ceramics prepared based on nanopowders synthesized in a laser torch. Part 1: Preparation features // Photonics. 2017. V. 67. P. 52–70. https://doi.org/10.22184/1993-7296.2017.67.7.52.70
- Osipov V.V., Platonov V.V., Lisenkov V.V., Tikhonov E.V. Applying CO2 and Ytterbium fiber lasers to high-performance production of refractory oxide nanopowders // Inorg. Mater. Appl. Res. 2022. V. 13. P. 674. https://doi.org/10.1134/S2075113322030285
- Platonov V.V., Kochurin E.A., Osipov V.V., Lisenkov V.V., Zubarev N.M. Characteristic properties of laser ablation of translucent targets // Laser Phys. 2018. V. 28. № 7. P. 076002. https://doi.org/10.1088/1555-6611/aabdb4
- Ямщиков В.М., Рогачев В.Г., Кудряшов Е.А., Качалин Г.Н. Перенос и пленение резонансного излучения в двухуровневой системе // Оптика и спектроскопия. 2020. Т. 128. Вып. 8. С. 1160–1164. https://doi.org/21883/OS.2020.08.49714.318-19
Yamshchikov V.M., Rogachev V.G, Kudryashov E.A., Kachalin G.N. Transfer and trapping of resonance radiation in a two-level system // Optics and Spectroscopy. 2020. V. 128. № 8. P. 1182–1186. https://doi.org/10.1134/S0030400X20080391
- Биберман Л.М., Воробьев В.С., Якубов И.Т. Кинетика неравновесной низкотемпературной плазмы. М.: Наука, 1982. 376 с.
Biberman L.M., Vorob'ev V.S, Yakubov I.T. Kinetics of nonequilibrium low-temperature plasmas. New York: Springer, 2012. 498 p.
- Holstein T. Imprisonment of resonance radiation in gases // Phys. Rev. 1947. V. 72. № 12. P. 1212–1233.
ru