DOI: 10.17586/1023-5086-2026-93-02-21-27
УДК: 535.37
Cascade mechanism of fluorescence enhancement in a ZnO-graphene quantum dot/epoxy-acrylate hybrid nanocomposite
Чекулаев М.С., Истомин И.Е., Бабкина Л.А. Бабкина Е.О., Mahi Singh, Ястребов С.Г., Евстрапов А.А. Каскадный механизм усиления флуоресценции в гибридном нанокомпозите ZnO-графеновые квантовые точки/эпоксиакрилат // Оптический журнал. 2026. Т. 93. № 2. С. 21–27. http://doi.org/10.17586/1023-5086-2026-93-02-21-27
Chekulaev M.S., Istomin I.E., Babkina L.A., Babkina E.O., Mahi Singh, Yastrebov S.G., Evstrapov A.A. Cascade mechanism of fluorescence enhancement in a ZnO-graphene quantum dot/epoxy-acrylate hybrid nanocomposite [in Russian] // Opticheskii Zhurnal. 2026. V. 93. № 2. P. 21–27. http://doi.org/10.17586/1023-5086-2026-93-02-21-27
Subject of study. Optical properties of a composite based on an epoxy-acrylate oligomer modified with zinc oxide (ZnO) nanoparticles. Relevance: The development of multifunctional polymer coatings for solar cells that convert UV radiation into visible light. Aim: To develop a model that establishes a cascade energy transfer mechanism as the cause of fluorescence enhancement. Research methods: the optical properties were studied using absorption spectroscopy and fluorimetry on a Hitachi U-3410 spectrophotometer and a Hitachi F-4010 spectrofluorimeter. Main results: a cascade mechanism of fluorescence enhancement has been experimentally established and theoretically substantiated. ZnO nanoparticles, acting as nanoresonators, absorb UV radiation and recombine through an exciton-polariton channel with subsequent re-emission. The re-emitted photons are effectively absorbed by graphene quantum dots, leading to radiative transitions in the visible region (410–480 nm). Scientific novelty: A cascade energy transfer mechanism from ZnO nanoresonators to graphene quantum dots has been established and substantiated for the first time. Practical significance: This paves the way for creating coatings that improve the efficiency of solar cells.
fluorescence, photocurable polymer, encapsulation, quantum dots
Acknowledgements:fluorescence, photocurable polymer, encapsulation, quantum dots
OCIS codes: 160.2540, 260.2510
References:- Бабкин О.Э., Бабкина Л.А., Василевская Т.Н. и др. Распределение нанокристаллов оксида цинка в полимерной пленке // Журнал прикладной химии. 2017. Т. 90. № 11. С. 1845–1850.
Babkin O.E., Babkina L.A., Vasilevskaya T.N. et al. Distribution of Zinc Oxide Nanocrystals in a Polymer Film // Russian Journal of Applied Chemistry. 2017. V. 90. N 11. P. 1845–1850. https://doi.org/ 10.1134/S1070427217110180
- Бабкин О.Э., Бабкина Л.А., Василевская Т.Н. и др. Особенности распределения по размерам нанокластеров ZnO в полимерной матрице // Физика твердого тела. 2018. Т. 60. № 12. С. 2470–2473. http://doi.org/10.21883/PJTF.2021.17.51386.18841
Babkin O.E., Babkina L.A., Vasilevskaya T.N. et al. Features of ZnO Nanocrystal Size Distribution in a Polymer Matrix // Physics of the Solid State. 2018. V. 60. № 12. P. 2663–2667. https://doi.org/ 10.1134/S1063783418120041
- John S. Photonic band gap materials: A new frontier in quantum optics // Physics Today. 1991. V. 44. № 5. P. 32–40. https://doi.org/ 10.1007/3-540-45338-5_7
- Иванов-Омский В.И., Истомин И.Е., Бабкин О.Э. и др. Локализация света в полимере на основе эпоксиакрилового композита, модифицированного нанокластерами ZnO // Письма в Журнал технической физики. 2021. Т. 47. № 17. С. 3–5. https://doi.org/ 10.21883/PJTF.2021.17.51386.18841
Ivanov-Omskii V.I., Istomin I.E., Babkin O.E., Babkina L.A., Vasilevskaya T.N., Izotova K.V., Singh M., Yastrebov S.G. Localization of light in epoxyacrylate-based composite polymer modified with ZnO nanoclusters // Technical Physics Letters. 2021. V. 47. N 17. P. 853–857. https://doi.org/ 10.1134/S1063785021090066
- Repp S., Erdem E. Controlling the exciton energy of zinc oxide (ZnO) quantum dots by changing the confinement conditions // Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2016. V. 152. P. 637–644. https://doi.org/ 10.1016/j.saa.2015.01.110
- Чекулаев М.С., Ястребов С.Г. Люминесценция углеродных квантовых точек в аморфном углероде // Оптический журнал. 2024. Т. 91. № 6. С. 62–66. http://doi.org/10.17586/ 1023-5086-2024-91-06-62-66
Chekulaev M.S., Yastrebov S.G. Luminescence of carbon quantum dots in amorphous carbon // Journal of Optical Technology. 2024. V. 91. N 6. P. 396–398. https://doi.org/ 10.1364/JOT.91.000396
- Парселл Э.М. Вероятности спонтанного излучения на радиочастотах // Физическое обозрение. 1946. Т. 69. С. 681.Purcell E.M. Spontaneous emission probabilities at radio frequencies // Physical Review. 1946. V. 69. P. 681.
ru