Back
DOI: 10.17586/1023-5086-2026-93-02-28-35
УДК: 535.3
Measurement of the silica glass absorption index in near infrared range
For Russian citation (Opticheskii Zhurnal):
Деркач И.Н., Добиков А.В., Гладкий В.Ю., Санников Г.П., Мальцева Н.С., Скоблова М.В. Измерение показателя поглощения кварцевого стекла в ближнем инфракрасном диапазоне // Оптический журнал. 2026. Т. 93. № 2. С. 28–35. http://doi.org/10.17586/1023-5086-2026-93-02-28-35
Derkach I.N., Dobikov A.V., Gladkiy V.Yu., Sannikov G.P., Maltseva N.S., Skoblova M.V. Measurement of the silica glass absorption index in near infrared range [in Russian] // Opticheskii Zhurnal. 2026. V. 93. № 2. P. 28-35. http://doi.org/10.17586/1023-5086-2026-93-02-28-35
For citation (Journal of Optical Technology):
-
Abstract:
The subject of the study. Absorption index of plate made of fused silica. The purpose of the work. It is the measurement of absorption index of fused silica at a wavelength of 793, 4 nm. Investigation of spatial heterogeneity of absorption index within optical samples aperture. Method. The absorption index measurement was carried out by photo-thermal method using Shack–Hartmann sensor. The measurement technique is based on the control of the wave front of the radiation passing through the sample subjected to local thermal loading by laser radiation and subsequent creation of a digital twin of the sample. Simulation of the heating processes and deformations of samples were performed by finite element method. The relative error in measurement is 20%. Main results. Mean value of the absorption index of three sample is from 0,6ґ10–5 to 1, 5ґ10–5 cm–1. There is big spatial heterogeneity of absorption in one of them. The ratio of maximum absorption to minimum absorption in it is equal to 1,7. Practical significance. The obtained results can be used for calculation of the thermal aberrations of near-infrared range laser optical system, in which optical elements are made of silica glass.
Keywords:
laser optics, fused silica, absorption index, finite elements method, wave front, Shack–Hartmann sensor
OCIS codes:
350.6830, 160.6030, 260.3060
References:
1. Власова К.В., Коновалов А.Н., Макаров А.И., Андреев Н.Ф., Кожеватов И.Е., Силин Д.Е. Синтетический кристаллический кварц как оптический материал для силовой оптики // Известия вузов. Радиофизика. 2019. Т. 62. № 6. С. 490–498.
Vlasov K.V., Konovalov D. N., Makarov A.I., Andreev N.F., Kozhevatov I.E., Silin D.E. Synthetic crystalline quartz as an optical material for power optics // Radiophysics and Quantum electronics. 2019. V. 62. № 6. P. 439–446. https://doi.org/10.1007/s11141-019-09989-4
2. Hild S., Lück H., Winkler W. et al. Measurement of a low-absorption sample of oh-reduced fused silica // Applied optics. 2006. V. 45. № 28. P. 7269–72. https://doi.org/10.1364/AO.45.007269
3. ISO 11551:2019. Optics and photonics. Lasers and laser-related equipment. Test method for absorptance of optical laser components. 05/11/2019. Geneva, ISO. 24 p.
4. Willamowski U., Ristau D., Welsch E. Measuring the absolute absorptance of optical laser components // Applied optics. 1998. V. 37. № 36. P. 8362–8370. https://doi.org/ 10.1364/ao.37.008362
5. Kao K.С., Davies T.W. Spectrophotometric studies of ultra low loss optical glasses-I: single beam method // Journal of Scientific Instruments (Journal of Physics E). 1968. V. 1. № 11. P. 1063–1068. https://doi.org/10.1088/0022-3735/1/11/303
6. Скворцов Л.А. Лазерная фототермическая спектроскопия индуцированного светом поглощения // Квантовая электроника. 2013. Т. 43. № 1. С. 1–13.
Skvortsov L.A. Laser photothermal spectroscopy of light-induced absorption // Quantum Electron. 2013. V. 43. № 1. P. 1–13. https://doi.org/ 10.1070/QE2013v043n01ABEH014912
7. Лукьянов А.Ю., Погорелко А.А. Фазовый (интерференционный) фототермический метод для раздельного измерения поверхностного и объемного поглощения // Журнал технической физики. 2002. Т. 72. № 5. С. 72–77.
Luk’yanov A.Yu., Pogorelko A.A. Phase (interferometric) photothermal method for separate measurements of surface and volume absorption // Technical Physics. 2002. V. 47. № 5. P. 585–590. https://doi.org/10.1134/1.1479987
8. Yoshida S., Reitze D.H., Tanner D.B., Mansell J.D. Method for measuring small optical absorption coefficients with use of a Shack–Hartmann wave-front detector // Applied optics. 2003. V. 42. №. 24. P. 4835–4840. https://doi.org/10.1364/AO.42.004835
9. Mann K.R., Bayer A., Leinhos U., Gloger J., Rousseau T., Schäfer B. Photo-thermal measurement of absorption and wavefront deformations in fused silica // Laser-Induced Damage in Optical Materials: 2008. Proceedings of SPIE — The International Society for Optical Engineering. 2008. V. 7132. 71321F. P. 1-11. https://doi.org/10.1117/12.804565