DOI: 10.17586/1023-5086-2026-93-02-36-47
УДК: 533.9.082, 544.032.65
Use of dual-color optical pyrometry for determining the characteristics of flying non-point condensed phase particles produced during laser ablation of leucosapphire
Ларичев М.Н., Сидельников Д., Абрамова М.В., Беляев Г.Е., Величко А.М. Использование двухлучевой оптической пирометрии для определения характеристик летящих неточечных частиц конденсированной фазы, образующихся при лазерной абляции лейкосапфира // Оптический журнал. 2026. Т. 93. № 2. С. 36–47. http://doi.org/10.17586/1023-5086-2026-93-02-36-47
Larichev M.N., Sidelnikov D., Abramova M.V., Belyaev G.E., Velichko A.M. Use of dual-color optical pyrometry for determining the characteristics of flying non-point condensed phase particles produced during laser ablation of leucosapphire [in Russian] // Opticheskii Zhurnal. 2026. V. 93. № 2. P. 36–47. http://doi.org/10.17586/1023-5086-2026-93-02-36-47
Subject of study. Contribution of optical aberration parameters of the optical system of a two-color spatial pyrometer with perpendicularly directed registration channels to the values of the determined characteristics of flying non-point particles (with sizes exceeding the spatial resolution of the pyrometer) of the condensed phase formed during laser ablation of alumina. The purpose of study. Development of a methodology enabling simultaneous determination of the temperature and size along the trajectory of the registered flying hot non-point particles, considering optical aberrations. Method. In this work, optical aberration characteristics of the optical system in the observation area of the two-channel pyrometer were determined using objects simulating the trail of a moving hot particle. Following processing of experimental data from each registration channel takes those characteristics into consideration. Main results. The developed methodology provided the possibility of studying non-point particles, including determination of the physical size along the trajectory for particles visible in both channels, characterization of the ongoing transformations of the moving hot particles; reconstruction of the full 3D trajectory of a particle recorded in a single channel; calculation the effective temperature of the particle surface areas. Practical significance. The proposed approach can be used with the pyrometer in the development and implementation of technological processes associated with laser ablation (3D printing, welding, spraying), which will allow for express control of the parameters of the resulting condensed phase particles and adjusting the parameters of the process being implemented.
optical pyrometry, imaging, high-speed photography, laser ablation, aluminum oxide, particles, condensed phase
Acknowledgements:OCIS codes: 120.4820, 100.3020, 100.2960
References:- Larichev M.N., Belyaev G.E., Stepanov I.G. et al. Application of two-color pyrometer for studying of flying luminous particles: Products of alumina laser ablation // Review of Scientific Instruments. 2019. V. 90. №. 4. P. 043904 https://doi.org/10.1063/5.0021784
- Tasaki R., Higashihata M., Suwa A. et al. High-speed observation of semiconductor microsphere generation by laser ablation in the air // Applied Physics A. 2018. V. 124. P. 1–6. https://doi.org/10.1007/s00339-018-1596-3
- Lu H. Ip L.-T., Mackrory A. et al. Particle surface temperature measurements with multicolor band pyrometry // AIChE journal. 2009. V. 55. № 1. P. 243–255. https://doi.org/10.1002/aic.11677
- Meriaudeau F. Real time multispectral high temperature measurement: Application to control in the industry // Image and Vision Computing. 2007. V. 25. Iss. 7. P. 1124–1133. https://doi.org/10.1016/j.imavis.2006.04.019
- Fu T., Liu J., Tian J. VIS-NIR multispectral synchronous imaging pyrometer for high-temperature measurements // Review of Scientific Instruments. 2017. V. 88. № 6. P. 064902. https://doi.org/10.1063/1.4985170
- Афанасьев В.А. Оптические измерения: Учебник для вузов. М: Высш. школа, 1981. 230 с.
Afanasiev V.A. Optical measurements: A textbook for universities [in Russian]. Moscow: Higher school, 1981. 230p.
- Русинов М.М., Грамматин А.П., Иванов П.Д. и др. Справочник «Вычислительная оптика». 2007. 423 с. Rusinov M.M., Grammatin A.P., Ivanov P.D. et al. Handbook of computational optics [in Russian]. 2007. 423 p.
- Электронный ресурс URL: https://radojuva.com/2012/03/obzor-gelios-40-2-85mm-f1-5/ (Медиа-ресурс Радожива / Обзор Гелиос-40-2 1.5/85)
Electronic resource URL: https://radojuva.com/2012/03/obzor-gelios-40-2-85mm-f1-5/ (Media-resource Radojuva/ Overview Helios-40-2 1.5 / 85).
- Wu Z., Hristov N.I., Hedrik T.L. et al. Tracking a large number of objects from multiple views // 2009 IEEE 12th International Conference on Computer Vision. 2009. P. 1546–1553. https://doi.org/10.1109/ICCV.2009.5459274
- Иногамов Н.А., Петров Ю.В., Хохлов В.А. и др. Лазерная абляция: физические представления и приложения (обзор) // Теплофизика высоких температур. 2020. Т. 58. № 4. С. 689–706. https://doi.org/10.1134/S0018151X20040045Inogamov N.A., Petrov Y.V., Hohlov V.A. et al. Laser ablation: physical concepts and applications // High Temperature. 2020. V. 58. P. 632–646. https://doi.org/10.1134/S0018151X20040045
- Mingming Wu, Roberts J.W., Buckley M. Three-dimensional fluorescent particle tracking at micron-scale using a single camera // Experiments in Fluids. 2005. V. 38 P. 461–465. https://doi.org/10.1007/s00348-004-0925-9
- Muhammad M., Choi T.S. Sampling for shape from focus in optical microscopy // IEEE transactions on pattern analysis and machine intelligence. 2012. V. 34. № 3. P. 564–573. https://doi.org/10.1109/TPAMI.2011.144
- Pertuz S., Garcia M. A., Puig D. et al. A closed-form focus profile model for conventional digital cameras // International Journal of Computer Vision. 2017. V. 124. P. 273–286. https://doi.org/10.1007/s11263-017-1024-8
- Yiming Li, Yu-Le Wu, Philipp Hoess, Markus Mund, Jonas Ries. Depth-dependent PSF calibration and aberration correction for 3D single-molecule localization // Biomed. Opt. Express. 2019. V. 10. P. 2708–2718. https://doi.org/10.1364/BOE.10.002708
- Ларичев М.Н., Величко А.М., Беляев Г.Е. и др. Изучение конденсированной фазы, образующейся при взаимодействии лазерного излучения высокой мощности с кристаллической окисью алюминия // Известия Российской академии наук. Серия физическая. 2016. Т. 80. № 4. С. 445–445. https://doi.org/10.3103/S1062873816040249
Larichev M.N., Velichko A.M., Belyaev G.E. et al. Studying condensed phase formed upon interaction between a high-power laser pulse and crystal aluminum oxide // Bull. Russ. Acad. Sci. Phys. 2016. V. 80. P. 402–406. https://doi.org/10.3103/S1062873816040249
- Jingruo Chen, Fan Peng, Bo Tian, Chengdong Kong, Yutao Zheng, Shijie Xu, Yingzheng Liu, Weiwei Cai. Simultaneous temperature and particle size measurement of burning iron particles using a single color camera // Measurement. 2025. V. 241. P. 115679. https://doi.org/10.1016/j.measurement.2024.115679
ru