DOI: 10.17586/1023-5086-2026-93-02-60-69
УДК: 520.35
Optical design of the 8-band single-shot multispectral module for microscope
Батшев В.И. Оптическая система мультиспектрального модуля для микроскопа // Оптический журнал. 2026. Т. 93. № 2. С. 60–69. http://doi.org/10.17586/1023-5086-2026-93-02-60-69
Batshev V.I. Optical design of the multispectral module for microscope [in Russian] // Opticheskii Zhurnal. 2026. V. 93. № 2. P. 60–69. http://doi.org/10.17586/1023-5086-2026-93-02-60-69
Subject of study. Method for calculating the multispectral module for a microscope. The aim of the work is to develop and validate a multispectral device compatible with a standard optical microscope and providing simultaneous acquisition of spectral images of a microobject. Method. The multispectral camera consists of identical miniature lenses simultaneously forming images of the same object on different parts of a single matrix sensor. Spectral filtering is performed by narrow-band light filters installed behind each lens. Optical coupling of the multispectral camera and microscope is performed by using a special coupling system. Main results. The optical system of the multispectral module forming 8 spectral images of the same object on a single sensor in the spectral range of 450–800 nm is calculated. The multispectral module is manufactured. The correspondence of theoretically calculated and experimentally obtained image quality indicators is shown. Practical significance. The developed multispectral module can be applied both for spectral imaging and for the analysis of the spatial distribution of spectral properties of various microobjects. Scanning is not used to obtain spectral images, which allows the module to be used also for the study of fast processes or for the registration of weak signals with long exposures.
multispectral device, microscopy, optical coupling
Acknowledgements:the work was carried out within the framework of the State Assignment of the STC UI RAS (project FFNS-2025-0006)
OCIS codes: 110.4234, 110.0110, 120.4820
References:- Техническая микроскопия: практика работы с микроскопами для технических целей / Егорова О. Изд. 2-е, перераб. Москва: Техносфера, 2007. 357 с.
Technical microscopy: Practice using microscopes for technical purposes [in Russian] / O. Egorova. Moscow: Technosphera Publ., 2007. 357 p.
- Vo-Dihn T., Kasili P., Cullum B. Multispectral imaging for medical diagnostics // Proc. SPIE. 2002. V. 4615. P. 13–19. https://doi.org/10.1117/1466651
- Glenar D.A., Hillman J.J., Saif B., Bergstralh J. Acousto-optic imaging spectropolarimetry for remote sensing // Appl. Opt. 1994. V. 33(31). P. 7412–24. https://doi.org/10.1364/AO.3007412
- Заварзин В.И., Митрофанова Ю.С. Схемные решения для перспективной гиперспектральной аппаратуры // Оптический журнал. 2017. Т. 8 № 4. С. 12–16.
Zavarzin V.I., Mitrofanova Yu.S. System solutions for prospective hyperspectral equipment // J. Opt. Technol. 2017. V. 84. № 4. P. 226–230. https://doi.org/10.1364/JOT.84.000226
- Батшев В.И., Мачихин А.С., Крюков А.В. и др. Разработка мультиспектрального видеоэндоскопа для выявления посторонних веществ при неразрушающем контроле труднодоступных полостей // Светотехника. 2022. Т. 30. № 6. С. 14–18. https://doi.org/10.33383/2022-069
Batshev V., Machikhin A., Krukov A.V. et al. Development of a multispectral video endoscope for recognition of foreign substances during non-destructive testing of hard-to-reach cavities // Light & Engineering. 2022. V. 30. № 6. P. 15–21. https://doi.org/10.33383/2022-069
- Аникин С.П., Есипов В.Ф., Молчанов В.Я. и др. Акустооптический спектрометр изображений для астрофизических измерений // Оптика и спектроскопия. 2016. Т. 121. № 1. С. 124–132. https://doi.org/10.7868/S0030403416070023
Anikin S.P., Esipov V.F., Molchanov V.Ya. et al. An acousto-optical imaging spectrometer for astrophysical measurements // Optics and Spectroscopy. 2016. V. 121. № 1. P. 115–122. https://doi.org/10.1134/S0030400X1607002X
- Польщикова О.В., Мачихин А.С., Рамазанова А.Г. и др. Акустооптический гиперспектральный модуль для гистологического исследования микрообъектов // Оптика и спектроскопия. 2019. Т. 126. № 2. С. 237–244. https://doi.org/10.21883/OS.2019.02.47211.227-18
Polschikova O.V., Machikhin A.S., Ramazanova A.G. et al. An acousto-optic hyperspectral unit for histological study of microscopic objects // Optics and Spectroscopy. 2018. V. 125. № 6. P. 1074–1080. https://doi.org/10.1134/S0030400X19020188
- Ma L., Halicek M., Zhou X. et al. Hyperspectral microscopic imaging for automatic detection of head and neck squamous cell carcinoma using histologic image and machine learning // Proc. SPIE Int. Soc. Opt. Eng. 2020. V. 11320. P. 113200W. https://doi.org/10.1117/12.2549369
- Hamza M.M., Hamandi A., Makarov A. et al. Hyperspectral camera — attachment for microscopy // J. of Biomedical Photonics & Eng. 2021. V. 7. № 3. P. 030405. https://doi.org/10.18287/JBPE21.07.030405
- Tyler H.T., Keenan M., Black J. et al. Ultraminiature optical design for multispectral fluorescence imaging endoscopes // J. Biomed. Opt. 2017. V. 22. № 3. P. 036013. https://doi.org/1117/1.JBO.22.3.036013
- Bouhifd M., Whelan M., Aprahamian M. Use of acousto-optic tuneable filter in fluorescence imaging endoscopy // Proc. SPIE. 2003. V. 5143. P. 305. https://doi.org/10.1117/12.500700
- Мачихин А.С., Батшев В.И. Оптическая система для сопряжения двойных акустооптических монохроматоров и окуляров наблюдательных приборов // Приборы и техника эксперимента. 2014. № 6. С. 93–99. https://doi.org/10/1134/S0020441214060086
Machikhin A., Batshev V. An optical system for coupling double acousto-optic monochromators and eyepieces of visual optical instruments // Instruments and Experimental Techniques. 2014. № 6. P. 736–741. https://doi.org/10/1134/S0020441214060086
- Minh H.T., Baowei F. Compact and ultracompact spectral imagers: technology and applications in biomedical imaging // J. Biomed. Opt. 2023. V. 28. № 4. P. 040901. https://doi.org/10.1117/1.JBO.28.4.040901
- Vasilev E., Zedgenizov D., Zamyatin D. et al. Cathodoluminescence of diamond: Features of visualization // Crystals. 2021. V. 11. P. 1522. https://doi.org/10.3390/cryst11121522
- Батшев В.И., Крюков А.В., Мачихин А.С., Золотухина А.А. Оптическая система мультиспектральной видеокамеры // Оптический журнал. 2023. Т. 90. № 11. С. 113–123. http://doi.org/10.17586/1023-5086-2023-90-11-113-123
Batshev V. I., Krioukov A. V., Machikhin A. S., Zolotukhina A. A. Multispectral video camera optical system // Journal of Optical Technology. 2024. V. 90. № 11. P. 706–712. https://doi.org/10.1364/JOT.90.000706
- Грамматин А.П., Романова Г.Э., Балаценко О.Н. Расчет и автоматизация проектирования оптических систем. Учебное пособие. СПб: НИУ ИТМО, 2013. 128 с.
Grammatin A.P., Romaniva G.E., Balatsenko O.N. Calculation and automatization of optical systems design. Handbook [in Russian]. St. Petersburg: ITMO University, 2013. 128 p.
ru