DOI: 10.17586/1023-5086-2026-93-02-70-78
All-optical reversible Thapliyal–Ranganathan gate employing microring resonator and its application: design and analysis
Bhuvaneswari Viswanathan, Yuvaraj Sivagnanam, Manjur Hossain All-optical reversible Thapliyal–Ranganathan gate employing microring resonator and its application: design and analysis (Оптический реверсивный затвор Таплияла–Ранганатана с микрорезонатором: проектирование, анализ и применение) [на англ. языке] // Оптический журнал. 2026. Т. 93. № 2. С. 70–78. http://doi.org/10.17586/1023-5086-2026-93-02-70-78
Bhuvaneswari Viswanathan, Yuvaraj Sivagnanam, Manjur Hossain. All-optical reversible Thapliyal–Ranganathan gate employing microring resonator and its application: design and analysis (Оптический реверсивный затвор Таплияла–Ранганатана с микрорезонатором: проектирование, анализ и применение) [in English] // Opticheskii Zhurnal. 2026. V. 93. № 2. P. 70–78. http://doi.org/10.17586/1023-5086-2026-93-02-70-78
The subject of the study. Designing and analyzing the parameters of reversible logic circuits based on optical elements. The purpose of the work. Minimizing unused output signals and reducing quantum costs in reversible logic circuits based on optical elements. Method. Silicon microring resonator-based all-optical Thapliyal–Ranganathan reversible gate has been analyzed using MATLAB. The main results. The performance has been evaluated in terms of extinction ratio, contrast ratio, amplitude modulation, and on–off ratio, with obtained values of 15.94, 22.85, 0.2, and 35.11 dB, respectively. Practical significance. The found optimal parameters are possible to increase the efficiency of using logic circuits based on optical elements for its using for photonic reversible computing systems.
reversible logic gate, Thapliyal–Ranganathan gate, all-optical switch, microring resonator
OCIS codes: 060.2370
References:- Landauer R. Irreversibility and heat generation in the computing process // IBM journal of research and development. 1961. V. 5. № 3. P. 183–191. https://doi.org/10.1147/rd.53.0183
- Bennett C.H. Logical reversibility of computation // IBM journal of Research and Development. 1973. V. 17. № 6. P. 525–32. https://doi.org/10.1147/rd.176.0525
- Fredkin E. An informational process based on reversible universal cellular automata // Physica D: Nonlinear Phenomena. 1990. V. 45. № 1–3. P. 254–70. https://doi.org/10.1016/0167-2789(90)90186-S
- Fredkin E, Toffoli T. Conservative logic // International Journal of theoretical physics. 1982. V. 21. № 3. P. 219–53. https://doi.org/10.1007/BF01857727
- Peres A. Reversible logic and quantum computers // Physical review A. 1985. V. 32. № 6. P. 3266. https://doi.org/10.1103/PhysRevA.32.3266
- Feynman RP. Quantum mechanical computers // Found. Phys. 1986. V. 16. № 6. P. 507–32. https://doi.org/10.1515/9781400886975-036
- Kotb A., Zoiros K.E., Guo C. All-optical XOR, NOR, and NAND logic functions with parallel semiconductor optical amplifier-based Mach–Zehnder interferometer modules // Optics & laser technology. 2018. V. 108. P. 426–33. https://doi.org/10.1016/j.optlastec.2018.0027
- Maji K., Mukherjee K., Raja A. Frequency encoded all-optical universal logic gates using terahertz optical asymmetric demultiplexer // IJPOT. 2018. V. 4. № 3. P. 1–7.
- Bharti G.K., Rakshit J.K., Singh M.P., Yupapin P. Design of all-optical universal logic gates using mode-conversion in single silicon microring resonator // Journal of Nanophotonics. 2019. V. 13. № 3. P. 036002. https://doi.org/10.1117/1.JNP.13.036002
- Bharti G.K., Rakshit J.K. Micro-ring resonator based all optical reversible logic gates and its applications // Optoelectron. Adv. Mater. Rapid Commun. 2019. V. 13. № 1–2. P. 10–19.
- Kumar K.S., Mahanty S., Kumar A., Kumari N., Shekhar S., Wagisha O. Implementation of optimized all-optical TR logic gate using the micro-ring resonator structure // In 2024 5th International Conference on Recent Trends in Computer Science and Technology (ICRTCST). 2024. P. 659–663. https://doi.org/10.1109/ICRTCST61793.2024.10578516
- Rakshit J.K., Hossain M. Design and analysis of an efficient reversible hybrid new gate using silicon micro-ring resonator-based all-optical switch // Photonic Network Communications. 2022. V. 44. № 2. P. 116–132. https://doi.org/10.1007/s11107-022-00985-9
- Xu Q., Lipson M. All-optical logic based on silicon micro-ring resonators // Optics express. 2007. V. 15. № 3. P. 924–929. https://doi.org/10.1364/OE.15.000924
- Rakshit J.K., Chattopadhyay T., Roy J.N. Design of ring resonator based all optical switch for logic and arithmetic operations — a theoretical study // Optik. 2013. V. 124. № 23. P. 6048–6057. https://doi.org/10.1016/j.ijleo.2013.04.075
- Chun-Fei L.I., Na D. Optical switching in silicon nanowaveguide ring resonators based on Kerr effect and TPA effect // Chinese Physics Letters. 2009. V. 26. № 5. P. 054203. https://doi.org/10.1088/0256-307X/26/5/054203
- Rakshit J.K. Design of all optical 1-bit and 2-bit magnitude comparator using micro-ring resonator // In Conference on Lasers and Electro-optics/Pacific Rim. 2017. P. s1744.
- Bharti G.K., Sonkar R.K. Design and performance analysis of all-optical D and T flip-flop in a polarization rotation based micro-ring resonator // Optical and Quantum Electronics. 2022. V. 54. № 3. P. 176. https://doi.org/10.1007/s11082-022-03560-8
- Hossain M., Mondal K., Kumar D., Rakshit J.K., Mandal S. Design and study of silicon microring resonator based all-optical binary-coded decimal adder // Optical and Quantum Electronics. 2023. V. 55. № 12. P. 1100. https://doi.org/10.1007/s11082-023-05390-8
- Chao C.Y., Guo L.J. Design and optimization of microring resonators in biochemical sensing applications // Journal of lightwave technology. 2006. V. 24. № 3. P. 1395–1402. https://doi.org/10.1109/JLT.2005.863333
- Vardakas J.S., Zoiros K.E. Performance investigation of all-optical clock recovery circuit based on Fabry–Pérot filter and semiconductor optical amplifier assisted Sagnac switch // Optical Engineering. 2007. V. 46. № 8. P. 085005. https://doi.org/10.1117/1.2768956
ru