ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2026-93-02-79-87

УДК: 53.083

Technological control tools for roughness and defect structure of the surface of ZnGeP2 single crystals using coherent optics methods

For Russian citation (Opticheskii Zhurnal):

Буримов Н.И., Журин Т.А., Шандаров С.М., Юдин Н.Н., Худолей А.Л., Слюнько Е.С., Подзывалов С.Н., Кальсин А.Ю., Зиновьев М.М., Кузнецов В.С., Лысенко А.Б. Средства технологического контроля шероховатости и дефектной структуры поверхности монокристаллов ZnGeP2 методами когерентной оптики // Оптический журнал. 2026. Т. 93. № 2. С. 79–87. http://doi.org/10.17586/1023-5086-2026-93-02-79-87  

Burimov N.I., Zhurin T.A., Shandarov S.M., Yudin N.N., Khudoley A.L., Slyunko E.S., Podzyvalov S.N., Kalsin A.Yu., Zinovev M.M., Kuznetsov V.S., Lysenko A.B. Means of technological control of roughness and defect structure of the surface of ZnGeP2 single crystals by coherent optics methods [in Russian] // Opticheskii Zhurnal. 2026. V. 93. № 2. P. 79–87. http://doi.org/10.17586/1023-5086-2026-93-02-79-87

For citation (Journal of Optical Technology):
-
Abstract:

Subject of the study. The subject of the research is the parameters of roughness obtained by methods of coherent optics, polished surfaces, monocrystalline materials of the infrared range, on the example of the monocrystal ZnGeP2. The aim of the work is to create a method for estimating the surface roughness of zinc-germanium diphosphide ZnGeP2 crystals, which can be used and integrated into the polishing process based on methods of coherent optics. The main results. A methodology for assessing the quality of surface treatment of crystals using a spatial filter has been developed. An experimental setup has been developed to evaluate the quality of surface polishing of ZnGeP2 crystals. Measurements of the intensity of the scattered radiation reflected from the surface of the crystal, due to its roughness, were carried out using a system of lenses and a spatial filter that suppresses the constant component in the radiation spectrum. A solid-state laser with a wavelength of 532 nm and a power of 20 mW was used as the radiation source. As a meter of the intensity of scattered radiation, a photodiode FD-24K was used, connected to a universal voltmeter B7-40/5. Measurements of the intensity values were carried out for 6 samples of crystals with different quality of processing of their faces. The practical value. The verification of the experimental data obtained with the use of an industrial profile meter shows the applicability of the developed method for the qualitative assessment of the surface roughness of optical infrared materials, including the possibility of integrating this method into the polishing process.

Keywords:

zinc germanium diphosphide ZnGeP2, crystal surface treatment quality assessment, crystal surface polishing, industrial profilometer

Acknowledgements:
the work was carried out within the framework of the State Task of the Ministry of Science and Higher Education of the Russian Federation for 2023–2025. (Assignment FEWM-2023-0012)

OCIS codes: 190.4400, 120.3940, 120.6660, 240.5770, 240.5450

References:
  1. Gerhard C., Stappenbeck M. Impact of the polishing suspension concentration on laser damage of classically manufactured and plasma post-processed Zinc crown glass surfaces // Appl. Sci. Appl. Phys. 2018. № 8. P. 15562. https://doi.org/10.3390/app8091556
  2. Romanovskii O.A., Sadovnikov S.A., Kharchenko O.V. et al. Development of near/mid IR differential absorption OPO lidar system for remote gas analysis of the atmosphere / Remote sensing of clouds and the atmosphere XXIV // Proc. SPIE 11152. Strasbourg, France. 9 October 2019. P. 111520V. https://doi.org/10.1117/12.2532038
  3. Shi C., Ermold M., Oulundsen G. et al. CO2 and CO laser comparison of glass and ceramic processing / High-power laser materials processing: Applications, diagnostics, and systems VIII // Proc. SPIE 10911. San Francisco, California, United States. 27 February 2019. P. 109110M. https://doi.org/10.1117/12.2516966
  4. Mitrofanov A.V., Sidorov-Biryukov D.A., Rozhko M.V., Voronin A.A., Glek P.B., Ryabchuk S.V., Zheltikov A.M. Relativistic nonlinear optical phenomena in the field of subterawatt laser pulses // JETP Letters. 2020. V. 105. № 5. P. 17−23. https://doi.org/10.1103/physreva.105.053503
  5. Zhu X.L., Weng S.M., Chen M., Sheng Z.M., Zhang J. Efficient generation of relativistic near-single-cycle mid-infrared pulses in plasmas // Light Science & Applications. 2020. V. 9. № 1. P. 1−9. https://doi.org/10.1038/s41377-020-0282-3
  6. Pires H., Baudisch M., Sanchez D., Hemmer M., Biegert J. Ultrashort pulse generation in the mid-IR // Progress in Quantum Electronics. 2015. V. 43. P. 1−30. https://doi.org/10.1016/j.pquantelec.2015.07.001
  7. Das S. Optical parametric oscillator: status of tunable radiation in mid-IR to IR spectral range based on ZnGeP2 crystal pumped by solid state lasers // Opt. Quant. Electron. 2019. V. 51. № 3. P. 1−47. https://doi.org/10.1007/s11082-019-1782-3
  8. Hemming A., Richards J., Davidson A.A., Carmody N., Bennetts S., Simakov N., Haub J. 99 W mid-IR operation of a ZGP OPO at 25% duty cycle // Opt. Express. 2013. V. 21. № 8. P. 10062−10069. https://doi.org/10.1364/OE.21.010062
  9. Haakestad M.W., Fonnum H., Lippert E. Mid-infrared source with 0.2 J pulse energy based on nonlinear conversion of Q-switched pulses in ZnGeP2 // Opt. Express. 2014. V. 22. № 7. P. 8556−8564. https://doi.org/10.1364/OE.22.008556
  10. Qian C., Yao B., Zhao B., Liu G., Duan X., Ju Y., Wang Y. High repetition rate 102 W middle infrared ZnGeP2 master oscillator power amplifier system with thermal lens compensation // Optics Letters. 2019. V. 44. № 3. P. 715−718. https://doi.org/10.1364/OL.44.000715
  11. Suratwala T.I., Miller P.E., Bude J.D., Steele W.A., Shen N., Monticelli M.V., Feit, M.D., Laurence T.A., Norton M.A., Carr C.W. HF-based etching processes for improving laser damage resistance of fused silica optical surfaces // Journal of the American Ceramic Society. 2011. V. 94. P. 416–428. https://doi.org/10.1364/OE.24.000199
  12. Пшеницын В.И. Эллипсометрия модифицированных поверхностных слоев и шероховатых поверхностей оптических материалов // Автореферат докт. дисс. Санкт-Петербург: Государственный оптический институт им. С.И. Вавилова, 1994. 42 с. Pshenitsyn V.I. Ellipsometry of modified surface layers and rough surfaces of optical materials // Abstract of the doctoral thesis Diss. St. Petersburg: State Optical Institute named after S.I. Vavilov, 1994. 42 p.
  1. Verozubova G.A., Gribenyukov A.I., Mironov Yu.P. Two-temperature synthesis of ZnGeP2 // Inorgan. Mater. 2007. V. 43. P. 1040–1045. https://doi.org/10.1134/s0020168507100020
  2. Blunt L., Jiang X. Advanced techniques for assessment surface topography: development of a basis for 3D surface texture standards ”surfstand”. London: Kogan Page Science, 2003. 355 p.
  3. ISO 25178-2:2012 Geometrical product specifications (GPS) — surface texture: Areal — Part 2: Terms, definitions and surface texture parameters.
  4. ASME B46.1-2009 Surface Texture (Surface Roughness, Waviness, and Lay), American national standard.