DOI: 10.17586/1023-5086-2026-93-02-88-95
УДК: 621.373:535
Ellipsometry of standard and reduced graphene oxide thin films
Ильин М.Е., Тойкка А.С., Воробьев М.Г., Каманина Н.В. Эллипсометрия тонких плёнок стандартного и восстановленного оксида графена // Оптический журнал. 2026. Т. 93. № 2. С. 88–95. http://doi.org/10.17586/1023-5086-2026-93-02-88-95
Ilin M.E., Toikka A.S., Vorobev M.G., Kamanina N.V. Ellipsometry of standard and reduced graphene oxide thin films [in Russian] // Opticheskii Zhurnal. 2026. V. 93. № 2. P. 88–95. http://doi.org/10.17586/1023-5086-2026-93-02-88-95
Subject of study. Standard and reduced graphene oxide films. Aim of study. Dependence estimation of optical and morphological parameters of films on the state (standard or reduced) of graphene oxide films by the ellipsometry method. Method. Measurement of polarization vectors components and finding polarization angles y and D, allowing to determine extinction coefficients k and refraction coefficients n, to estimate thickness and surface roughness of the investigated films. Main results. For the standard and reduced graphene oxide films, the dispersion dependences of the parameters n and k in the visible range were determined, the thickness and roughness of the films were found, and the thickness and roughness of the graphene oxide film were found to decrease upon reduction process. Practical significance. The results of ellipsometry of thin films of standard and reconstituted graphene oxide obtained in this work allow to use standard films as illuminating coatings due to relatively low refractive index, and reconstituted films as reflecting and absorbing electrical contacts due to increased (n up to 2.6) refractive index and extinction (k up to 1.3). In addition, the proposed method can be used to determine the degree of material reducing.
ellipsometry, graphene oxide, thermal reduction, spin-coating, thin films
Acknowledgements:the work of Ilin M.E., Toikka A.S., Kamanina N.V. in the field of using thin-film polarizers for the functioning of LCD cells with investigated graphene oxide layers, supported by the Russian Science Foundation, Project № 24-23-00021 (https://rscf.ru/project/24-23-00021/). The work of Vorobyov M.G. was performed within the framework of the state assignment of the Ministry of Science and Higher Education of the Russian Federation at Institute of Problems of Mechanical Engineering. The founder’s number is № FFNF-2021-0001. Registration number of the topic: 121112500383-9 and the research was carried out using the equipment of UNU ‘Physics, Chemistry and Mechanics of Crystals and Thin Films’ Institute of Problems of Mechanical Engineering (St. Petersburg).
OCIS codes: 060.5530, 050.1590, 060.5625
References:1. Elhosiny Ali H., Algarni H., Yahia I.S., Khairy Y. Optical absorption and linear/nonlinear parameters of polyvinyl alcohol films doped by fullerene // Chinese Journal of Physics. 2021. V. 72. P. 270–285. https://doi.org/10.1016/j.cjph.2021.04.022
2. Chang H., Wu H. Graphene-based nanomaterials: Synthesis, properties, and optical and optoelectronic applications // Advanced Functional Materials. 2012. V. 23(16). P. 1984–1997. https://doi.org/10.1002/adfm.201202460
3. Kamanina N.V. Mechanisms of optical limiting in p-conjugated organic system: Fullerene-doped polyimide // Synthetic Metals. 2002. V. 127. № 1–3. P. 121–128. https://doi.org/10.1016/S0379-6779(01)00598-7
4. Kruss S., Hilmer A.J., Zhang J., Reuel N.F., Mu B., Strano M.S. Carbon nanotubes as optical biomedical sensors // Advanced Drug Delivery Reviews. 2013. V. 65(15). P. 1933–1950. https://doi.org/10.1016/j.addr.2013.07.015
5. Toikka A.S., Fedorova L.O., Kamanina N.V. Influence of laser-deposited carbon-containing nanoparticles on the orienting properties of indium-tin-oxide-based conducting layers for liquid crystal devices // J. Opt. Technol. 2024. V. 91. P. 55–60. https://doi.org/10.1364/JOT.91.000055
6. Lagerwall J.P.F., Scalia G. Carbon nanotubes in liquid crystals // Journal of Materials Chemistry. 2008. V. 18(25). P. 2890. https://doi.org/10.1039/b802707b
7. Draude A.P., Dierking I. Thermotropic liquid crystals with low-dimensional carbon allotropes // Nano Express. 2021. V. 2. № 1. P. 12002. https://doi.org/10.1088/2632-959X/abdf2d
8. Wu J., Jia L., Zhang Y., Qu Y., Jia B., Moss D.J. Graphene oxide for integrated photonics and flat optics // Advanced Materials. 20202006415. https://doi.org/10.1002/adma.202006415
9. Ильин М.Е., Каманина Н.В. Оптическое пропускание пленок стандартного и восстановленного оксида графена при обработке эрбиевым лазером с варьированием плотностей энергии // Изв. СПбГЭТУ «ЛЭТИ». 2024. Т. 17. № 8. С. 5–12. https://doi.org/10.32603/2071-8985-2024-17-8-5-12
Ilin M.E., Kamanina N.V. Optical transmittance of standard and reduced graphene oxide films under Erbium laser treatment with varying energy densities // LETI Transactions on Electrical Engineering & Computer Science. 2024. V. 17. № 8. P. 5–12. https://doi.org/10.32603/2071-8985-2024-17-8-5-12
10. Ильин М.Е., Тойкка А.С., Каманина Н.В. Вариация свободных поверхностных энергий пленок термически восстановленного оксида графена, полученных на подложках оксида индия и олова // Прикладная физика. 2025. № 3. C. 60–65. https://doi.org/10.51368/1996-0948-2025-3-60-65
Ilin M.E., Toikka A.S., Kamanina N.V. Variation of free surface energies in thermally reduced graphene oxide films deposited on indium tin oxide substrates // Applied Physics. 2025. № 3. P. 60–65. https://doi.org/10.51368/1996-0948-2025-3-60-65
11. Wu S., Efron U. Optical properties of thin nematic liquid crystal cells // Applied Physics Letters. 1986. V. 48(10). P. 624–626. https://doi.org/10.1063/1.96724
12. Hong C.-H., Shin J.-H., Ju B.-K., Kim K.-H., Park N.-M., Kim B.-S., Cheong W.-S. Index-matched indium tin oxide electrodes for capacitive touch screen panel applications // Journal of Nanoscience and Nanotechnology. 2013. V. 13(11). P. 7756–7759. https://doi.org/10.1166/jnn.2013.7814
13. Optical properties of graphene oxide and reduced graphene oxide determined by spectroscopic ellipsometry / S. Schöche, N. Hong, M. Khorasaninejad, A. Ambrosio, E. Orabona, P. Maddalena, F. Capasso // App. Surface Sci. 2017. V. 421. P. 778–782. https://doi.org/10.1016/j.apsusc.2017. 01.035
14. Jung I., Vaupel M., Pelton M., Piner R. et. al. Characterization of thermally reduced graphene oxide by imaging Ellipsometry // The Journal of Physical Chemistry C. 2008. V. 112(23). P. 8499–8506. https://doi.org/10.1021/jp802173m
15. Gangwar P., Singh S., Khare N. Study of optical properties of graphene oxide and its derivatives using spectroscopic ellipsometry // Applied Physics A. 2018. V. 124(9). https://doi.org/10.1007/s00339-018-1999-1
16. Shen Y., Zhou P., Sun Q.Q., Wan L., Li J., Chen L.Y.,Wang X.B. Optical investigation of reduced graphene oxide by spectroscopic ellipsometry and the band-gap tuning // Applied Physics Letters. 2011. V. 99(14). P. 141911. https://doi.org/10.1063/1.3646908
17. Ghosh M., Pradipkanti L., Rai V., Satapathy D.K., Vayalamkuzhi P., Jaiswal M. Confined water layers in graphene oxide probed with spectroscopic ellipsometry // Applied Physics Letters. 2015. V. 106(24). P. 241902. https://doi.org/10.1063/1.4922731
18. Fujiwara H. Spectroscopic ellipsometry: Principles and applications. Chichester: John Wiley & Sons Ltd, 2007. 392 p.
19. Sun L. Structure and synthesis of graphene oxide // Chinese Journal of Chemical Engineering. https://doi.org/10.1016/j.cjche.2019.05.003
20. Yuhong Cao, Ertao Hu, Jie Xing, Li Liu, Tong Gu, Jiajin Zheng, Kehan Yu, Wei Wei. Optical constants of restored and etched reduced graphene oxide: a spectroscopic ellipsometry study // Opt. Mater. Express. 2019. V. 9. P. 234–243. https://doi.org/10.1364/OME.9.000234
21. Politano G.G., Versace C. Variable-angle spectroscopic ellipsometry of graphene-based films // Coatings. 2021. V. 11. P. 462. https://doi.org/10.3390/coatings11040462
ru