DOI: 10.17586/1023-5086-2026-93-02-96-106
УДК: 535.339.047; 617.7-001.15
Role of the spectral composition of everyday lighting in the ametropia provoking
Петронюк Ю.С., Храмцова Е.А., Трофимова Н.Н., Ратновская А.В., Антипова К.Г., Пацаев Т.Д., Крупнин А.Е., Соколова В.В., Гурьева Т.С., Медникова Е.И. Роль спектрального состава повседневного освещения в провоцировании аметропии // Оптический журнал. 2026. Т. 93. № 2. С. 96–106. http://doi.org/10.17586/1023-5086-2026-93-02-96-106
Petronyuk Y.S., Khramtsova E.A., Trofimova N.N., Ratnovskaya A.V., Antipova K.G., Krupnin A.E., Patsaev T.D., Sokolova V.V., Gurieva T.S., Mednikova E.I. Role of the spectral composition of everyday lighting in the ametropia provoking [in Russian] // Opticheskii Zhurnal. 2026. V. 93. № 2. P. 96-106. http://doi.org/10.17586/1023-5086-2026-93-02-96-106
The subject of the study is the role of the visible spectrum of everyday lighting in causing myopia in adolescents. The aim is to investigate the effects of narrow spectral compositions of everyday light on eye growth, identify induced changes in morphology and mechanical properties of the sclera by a rapidly evolving biological model; and based on experimental data, to identify the possibility of preventing the development of myopia in children and adolescents. Methods. The work was conducted using Japanese quails. LEDs with narrow spectral ranges (blue (450 ± 25 nm), red (630 ± 50 nm) and yellow (560 ± 50 nm) were used as light sources. The sizes and morphological features of the structural elements of the eye along the optical axis were studied in the native state using high-resolution acoustic methods, and in vitro with light and electron microscopy. The mechanical properties of the sclera were studied using a standard tensile machine. The main results were obtained for the first time at a physiological level of illumination from birth to the age of fertility (45–65 days). The narrow spectrum induced changes in anteroposterior axis length (APA), especially in lens thickness, morphology and mechanical properties of the sclera, were revealed in laboratory animals (Japanese quails), as they matured. Experimental data confirm the formation of ametropia in the eyes, when the spectrum of daily lighting shifts towards blue or red light. Practical significance. The results of the study allow us to pay attention to the spectral characteristics of everyday lighting sources, including display devices, which significantly affect the formation of eye ametropia in ametropia in children and adolescents, and provide recommendations for its prevention.
everyday lighting, myopia, Japanese quail, ultrasound microscopy, sclera, biomechanics
Acknowledgements:the study was performed within the framework of state assignment IBCP RAS (122041400112-8, 120414-0001-9) and STC UI RAS. The mechanical testing and electron microscopy imaging were carried out within the state assignment of NRC “Kurchatov Institute”.
OCIS codes: 330.1070; 330.4460
References:1. Нелинейный глаз: новые технологии зрительной реабилитации / Под ред. Зуевой М.В. Национальный медицинский исследовательский центр глазных болезней имени Г. Гельмгольца Минздрава России [и др.]. Санкт-Петербург: ВММ, 2024. 511 с.
Nonlinear eye: new technologies of visual rehabilitation (in Russian) / Ed. by Zueva M.V. St. Petersburg: VMM, 2024. 511 p.
2. Lawrenson J.G., Huntjens B., Virgili G., Ng S., Dhakal R., Downie L.E., Verkicharla P.K., Kernohan A., Li T., Walline J.J. Interventions for myopia control in children: a living systematic review and network meta-analysis // Cochrane Database Syst. Rev. 2025. Feb 13. № 2(2). P. CD014758. https://doi.org/10.1002/14651858.CD014758.pub3
3. Rucker F.J., Wallman J. Chick eyes compensate for chromatic simulations of hyperopic and myopic defocus: evidence that the eye uses longitudinal chromatic aberration to guide eye-growth // Vis. Res. 2009. V. 49. P. 1775e1783. https://doi.org/10.1016/j.visres.2009.04.014
4. Koshits I.N., Svetlova O., Guseva M., Egemberdiev M., Makarovskaya O., Masian Ja. The physiological causes for the eye’s optical axis growth and executive mechanisms in the metabolic theory of adaptive myopia and the theory of retinal defocus // Ophth. & Vis. Sci. 2018. V. 2. № 2. P. 261. ISSN: 2573-4997. https://scientiaricerca.com/sropvs/SROPVS-02-00042.php
5. Dai X., Tang Z., Ju Y., Ni N., Gao H., Wang J., Yin L., Liu A., Weng S., Zhang J., Zhang J., Gu P. Effects of blue light-exposed retinal pigment epithelial cells on the process of ametropia // Biochem. Biophys. Res. Commun. 2021. V. 549. P. 14. https://doi.org/10.1016/j.bbrc.2021.02.089
6. Tang X.P., Tang Z.J., Fan H.B., Zou Y.C. Contributions from light level and spectral content on refractive development in young rabbits // Int. J. Ophthalmol. 2025. V. 18(3). P. 390–397. https://doi.org/10.18240/ijo.2025.03.03
7. Liu R., Qian Y.F., He J.C., Hu M., Zhou X.T., Dai J.H., Qu X.M., Chu R.Y. Effects of different monochromatic lights on refractive development and eye growth in guinea pigs // Exp. Eye. Res. 2011. V. 92. № 6. P. 447. https://doi.org/10.1016/j.exer.2011.03.003
8. Foulds W.S., Barathi V.A., Luu C.D. Progressive myopia or hyperopia can be induced in chicks and reversed by manipulation of the chromaticity of ambient light // Invest. Ophthalmol. Vis Sci. 2013. V. 54. № 13. P. 8004. https://doi.org/10.1167/iovs.13-12476
9. Smith E.L. 3rd, Hung L.F., Arumugam B., Holden B.A., Neitz M., Neitz J. Effects of long-wavelength lighting on refractive development in infant rhesus monkeys // Invest. Opthalmol. Vis. Sci. 2015. V. 56. № 11. P. 6490. https://doi.org/10.1167/iovs.15-17025
10. She Z., Hung L.F., Arumugam B., Beach K.M., Smith E.L. 3rd. Effects of low intensity ambient lighting on refractive development in infant rhesus monkeys (Macacamulatta) // Vis. Res. 2020. V. 176. P. 48.https://doi.org/10.1016/j.visres.2020.07.004
11. Qian Y.F., Dai J.H., Liu R., Chen M.J., Zhou X.T., Chu R.Y. Effects of the chromatic defocus caused by interchange of two monochromatic lights on refraction and ocular dimension in guinea pigs // PLoS One. 2013. V. 8. № 5. P. e63229. http://doi.org/10.1371/journal.pone.0063229
12.Smith E.L. 3rd, Hung L.F., Arumugam B., Huang J. Negative lens-induced myopia in infant monkeys: effects of high ambient lighting // Invest. Ophthalmol.
Vis. Sci. 2013. V. 54. № 4. P. 2959. https://doi.org/10.1167/iovs.13-11713
13.Ashby R.S., Schaeffel F. The effect of bright light on lens compensation in chicks // Invest. Ophth. Vis. Sci. 2010. V. 51. № 10. P. 5247. https://doi.org/10.1167/iovs.09-4689
14.Troilo D., Smith E.L. 3rd, Nickla D.L., Ashby R., Tkatchenko A.V., Ostrin L.A., Gawne T.J., Pardue M.T., Summers J.A., Kee C.S., Schroedl F., Wahl S., Jones L. IMI – report on experimental models of emmetropization and myopia // Invest. Ophthalmol. Vis. Sci. 2019. V. 60. № 3. P. M31. https://doi.org/10.1167/iovs.18-25967
15.Petronyuk Y.S., Trofimova N.N., Zak P.P., Khramtsova E.A., Levin V.M., Andryukhina O.M., Andryukhina A.S., Ryabtseva A.A., Guryeva T.S., Mednikova E.I., Titov S.A. Study of eye pathologies in the japanese quail biomodel coturnix japonica // Russ. J. of Phys. Chem. B. 2022. V. 16. № 1. P. 97. https://doi.org/10.1134/s1990793122010249
16. Kusakari T., Sato T., Tokoro T. Visual deprivation stimulates the exchange of the fibrous sclera into the cartilaginous sclera in chicks // Exp. Eye Res. 2001. V. 73. P. 533. https://doi.org/10.1006/exer.2001.1064
17. Hart N.S., Hunt D.M. Avian visual pigments: characteristics, spectral tuning, and evolution // Am. Nat. 2007. V. 169. P. S7. https://doi.org/10.1086/510141
18.Каркищенко Н.Н., Грачев С.В. Руководство по лабораторным животным и альтернативным моделям в биомедицинских технологиях. М.: Профиль-2С, 2010. 358 с.
Karkishchenko N.N., Grachev S.V. Guidelines on laboratory animals and alternative models in biomedical technologies (in Russian). M: Profil-2C, 2010.
358 p.
19. Hussey K.A., Hadyniak S.E., Johnston R.J.Jr. Patterning and development of photoreceptors in the human retina // Front Cell Dev Biol. 2022. V. 10. P. 878350. https://doi.org/10.3389/fcell.2022.878350
20.Passmann C., Ermert H. 150 MHz in vivo ultrasound of the skin: imaging techniques and signal processing procedures targeting homogeneous resolution // Proc. of IEEE Ultras. Symp. 1994. V. 3. P. 1661. https://doi.org/10.1109/ULTSYM.1994.401909
21. Zakutailov K.V., Levin V.M., Petronyuk Y.S. Highresolution ultrasonic ultrasound methods: Microstructure visualization and diagnostics of elastic properties of modern materials // Inorg. Mater. 2010. V. 46. P. 1655. https://doi.org/10.1134/s0020168510150100
22.Бэмбер Дж., Дикинсон Р., Эккерсли Р. и др. Ультразвук в медицине. Физические основы применения / Под ред. Хилла К. Пер. с англ. под ред. Гаврилова Л.Р. Изд. 2-е, перераб. и доп. Москва: Физматлит, 2008. 539 с.
Hill C.R. (Editor), Bamber J.C. (Editor), ter Haar G.R. (Editor) // Physical Principles of Medical Ultrasonics. 2nd Edition. 2004. 528 p.
23.Rada J.A.S., Shelton S., Norton T.T. The sclera and myopia // Experimental Eye Research. 2006. V. 82 (2). P. 185. https://doi.org/10.1016/j.exer.2005.08.009
ru