DOI: 10.17586/1023-5086-2026-93-03-102-110
УДК: 535.373.2
Sensitized photochromism of bacteriorhodopsin films
Лантух Ю.Д. Сенсибилизированный фотохромизм пленок бактериородопсина // Оптический журнал. 2026. Т. 93. № 3. С. 102–110. http://doi.org/10.17586/1023-5086-2026-93-03-102-110
Lantukh Yu.D. Sensitized photochromism of bacteriorhodopsin films [in Russian] // Opticheskii Zhurnal. 2026. V. 93. № 3. P. 102–110. http://doi.org/10.17586/1023-5086-2026-93-03-102-110
Subject of Study. Photochromic properties of bacteriorhodopsin in a solid matrix with the addition of acridine orange, a sensitizing dye. Aim of study. Demonstration of the possibility of sensitized control of photochromism of the film form of bacteriorhodopsin by means of non-radiative energy transfer from organic dye molecules and, as an example, a model of an elementary fully optically controlled transparency. Method. A film donor-acceptor system was obtained by immobilizing acridine orange dye (donor) from an aqueous solution onto a “Biochrom” film based on bacteriorhodopsin (acceptor). The dynamics of bacteriorhodopsin’s visible transmission spectrum changes upon laser excitation of the donor were spectrophotometrically studied. Main Results. It was shown that upon excitation of the donor, a reversible disappearance of the protein absorption band in the visible region (500–600 nm) was observed. This effect can be attributed to controlled photochromism of bacteriorhodopsin due to excitation energy transfer. A prototype cell with modulated optical transmission has been realized. Practical significance. The results of this study allow us to extend the spectral sensitivity of bacteriorhodopsin beyond the absorption band of the protein’s primary form. This expands the potential for bacteriorhodopsin’s application as a photochromic material, as well as its use in photovoltaics, sensors, and other fields.
Bacteriorhodopsin, energy transfer, organic dyes, associates, optically controlled transparency
OCIS codes: 300.6390, 160.1435, 250.2080
References:- Ashwini R., Vijayanand S., Hemapriya J. Photonic potential of haloarchaeal pigment bacteriorhodopsin for future electronics: Review // CurrMicrobiol. 2017. V. 74. P. 996–1002. https://doi.org/10.1007/s00284-017-1271-5
- Saeedi P., Moosaabadi J.M., Sebtahmadi S.S., et al. Potential applications of bacteriorhodopsin mutant // Bioengineered. 2012. V. 3. № 6. P. 326–328. https://doi.org/10.4161/bioe.21445
- Li Y-T., Tian Y., Tian H., et al. A review on bacteriorhodopsin-based bioelectronic devices // Sensors (Basel). 2018. V. 18. № 5. P. 1368. https://doi.org/10.3390/s18051368
- Ranaghan M.J., Wagner N.L., Sandberg M.N., et al. Optical applications of biomolecules // Optical Biomimetics. Materials and Applications. Woodhead Publishing Series in Electronic and Optical Materials. 2012. P. 20–78. https://doi.org/10.1533/9780857097651.20
- Дружко А.Б. Бактериородопсин: фундаментальные аспекты и возможности для практического применения. М.: РАН, 2022. 92 с.
- Всеволодов Н.Н. Биопигменты — фоторегистраторы: фотоматериал на бактериородопсине / Под ред. Иваницкого Г.Р. М.: Наука, 1988. 224 с.
- Druzhko A.B., Dyukova T.V. Phototransformations of bacteriorhodopsin and its derivatives in polymer matrices // Trends in Photochem. and Photobiol. 2011. V. 13. P. 13–24.
- Rakovich A., Sukhanova A., Bouchonville N., et al. Resonance energy transfer improves the biological function of Bacteriorhodopsin within a hybrid material built from purple membranes and semiconductor quantum dots // Nano Lett. 2010. V. 10. № 7. P. 2640–2648. https://doi.org/10.1021/nl1013772
- Krivenkov V., Samokhvalov P., Nabiev I. Remarkably enhanced photoelectrical efficiency of bacteriorhodopsin in quantum dot — Purple membrane complexes under two-photon excitation // Biosensors and Bioelectrons. 2019. V. 13. P. 117–122. https://doi.org/10.1016/j.bios.2019.05.009
- Johnson K.E., Gakhar S., Risbud S.H., et al. Development and characterization of titanium dioxide gel with encapsulated Bacteriorhodopsin for hydrogen production // Langmuir. 2018. V. 34. № 25. P. 7488–7496. https://doi.org/10.1021/acs.langmuir.8b01471
- Bryl K. Fluorescence resonance energy transferas a spectroscopic ruler for the investigation of protein induced lipid membrane curvature: Bacteriorhodopsin and Bacteriorhodopsin analogs in model lipid membranes // Appl. Spectrosc. 2023. V. 77. № 2. P. 187–199. https://doi.org/10.1177/00037028221135645
- Лантух Ю.Д., Летута С.Н., Алиджанов Э.К. Сенсибилизированная флуоресценция и суперлюминесценция красителя в функциональной хитозан-желатиновой матрице // Оптический журнал. 2021. Т. 88. № 10. С. 59–64. http://doi.org/10.17586/1023-5086-2021-88-10-59-64
- Лантух Ю.Д. Фотохромные свойства пленки Биохром после 30-летней консервации // Тез. докл. 20 междунар. конф. по голографии и прикладным оптическим технологиям — HOLOEXPO-2023. Сочи, Россия. 11–15 сентября 2023. С. 464-467.
- Лакович Д. Основы флуоресцентной спектроскопии / Пер. с англ. Козьменко М.В., Савицкого А.П. под ред. Кузьмина М.Г. М.: Мир, 1986. 496 с.
- Rivera J.A., Desai K.V., Eden J.G. Fluorophore-gold nanoparticle FRET/plasmonic lasers with the streptavidin-biotin complex as the acceptor–donor linkage // AIP Advances. 2021. V. 11. № 12. P. 125033. https://doi.org/10.1063/5.0068168
- Грачев. А.В., Пономарев А.Н., Южаков В.И. Фотоэнергетика молекулярных форм акридиновых красителей в полимерных матрицах // Вестник Моск. ун-та. Сер. 3. Физ. Астрон. 1992. № 6. С. 30–37.
- Барановский С.Ф., Болотин П.А., Чернышев Д.Н. Спектральное исследование самоассоциации гидрохлорида акридина оранжевого в водном растворе // Вестник СевГТУ. Физика и математика. 2007. Вып. 85. С. 1–5.
- Лантух Ю.Д., Летута С.Н., Пашкевич С.Н. и др. Высокоэффективный излучатель на основе пленок желатина с модифицированной структурой // Оптический журнал. 2019. Т. 86. № 9. С. 63–67. https://doi.org/10.17586/1023-5086-2019-86-09-63-67
- Гребенников Е.П. Бактериородопсин — биологический преобразователь световой энергии с уникальными технологическими возможностями // Российский химический журнал. 2006. Т. L. № 5. С. 25–36.
ru