ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2026-93-03-15-23

УДК: 535.42

Effect of wavefront aberrations on the point spread function at sharp focusing for different types of homogeneous polarization

For Russian citation (Opticheskii Zhurnal):

Хорин П.А., Черных А.В., Хонина С.Н. Влияние аберраций волнового фронта на функцию рассеяния точки при острой фокусировке для различных типов поляризации // Оптический журнал. 2026. Т. 93. № 3. С. 15–23. http://doi.org/10.17586/1023-5086-2026-93-03-15-23

Khorin P.A., Chernykh A.V., Khonina S.N. Effect of wavefront aberrations on the point spread function at sharp focusing for different types of homogeneous polarization [in Russian] // Opticheskii Zhurnal. 2026. V. 93. № 3. P. 15–23. http://doi.org/10.17586/1023-5086-2026-93-03-15-23

For citation (Journal of Optical Technology):
-
Abstract:

Subject of study. Wavefront aberrations at sharp focusing for different types of homogeneous (linear and circular) polarization. Aim of study. Determination of the influence of sharp focusing of wave aberrations on the size of the focal spot. Method. The influence of wavefront aberrations during tight focusing of laser radiation was simulated using the Debye approximation. The polarization type of the aberrated wavefront was varied in a series of numerical experiments. The objective criteria were the maximum intensity, transverse and longitudinal dimensions, and the degree of asymmetry, depending on the magnitude and type of aberration distortions. Main results. According to research, controlled aberration in some cases helps to reduce the size of the focal spot. Simulations of tight focusing of light fields with homogeneous polarization (linear and circular) have shown that loworder aberrations (meridian index no more than 2) allow the formation of a compact central light spot in one of the electric field components. Higher order aberrations shift energy away from the center of focus, distorting the intensity distribution. Practical significance. The obtained data are relevant for high-precision optics applications, including microscopy, laser processing, and adaptive systems. The results are applicable for optimizing focusing and reducing aberrations in real-world optical setups.

Keywords:

wave aberrations, sharp focusing, homogeneous (linear and circular) polarization

OCIS codes: 050.1970, 260.1960

References:

1. Graydon O. Tight focusing // Nature Photon. 2018. V. 12. № 5. P. 254–254. https://doi.org/10.1038/s41566-018-0171-y
2. Khonina S.N. Vortex beams with high-order cylindrical polarization: Features of focal distributions // Appl. Phys. B. 2019. V. 125. № 6. P. 100. https://doi.org/10.1007/s00340-019-7212-1
3. Zhang Q., Zhang Y., Zhou Y., et al. Reactive helicity and momentum of tightly focused hybrid polarized vector beams // J. Opt. 2025. V. 27. № 5. P. 055403. https://doi.org/10.1088/2040-8986/add1ec
4. Khonina S.N., Degtyarev S.A., Ustinov A.V., et al. Metalenses for the generation of vector Lissajous beams with a complex Poynting vector density // Opt. Exp. 2021. V. 29. № 12. P. 18634. https://doi.org/10.1364/OE.428453
5. Alkelly A.A., Al-Ahsab H.T., Cheng M., et al. Tight focusing of azimuthally polarized Laguerre–Gaussian vortex beams by diffractive axicons // Phys. Scr. 2024. V. 99. № 2. P. 025508. http://doi.org/10.1088/1402-4896/ad1958
6. Stafeev S.S., Pryamikov A.D., Alagashev G.K., et.al. Reverse energy flow in vector modes of optical fibers // Computer Opt. 2023. V. 47. № 1. http://doi.org/10.18287/2412-6179-CO-1229
7. Khonina S.N., Degtyarev S.A., Porfirev A.P. Control of the distribution of spin angular momentum density in optical vortex beams with partially transformed cylindrical polarization // Phys. Lett. A. 2025. V. 541. P. 130418. https://doi.org/10.1016/j.physleta.2025.130418
8. Salamin Y.I., Keitel C.H. Electron acceleration by a tightly focused laser beam // Phys. Rev. Lett. 2002. V. 88. № 9. P. 095005. https://doi.org/10.1103/physrevlett.88.095005
9. Xue Y., Wang Y., Zhou S., et al. Focus shaping and optical manipulation using highly focused second-order full Poincaré beam // JOSA. A. 2018. V. 35. № 6. P. 953. https://doi.org/10.1364/josaa.35.000953
10. Porfirev A., Khonina S., Kuchmizhak A. Light-matter interaction empowered by orbital angular momentum: Control of matter at the micro- and nanoscale // Progress in Quantum Electronics. 2023. V. 88. P. 100459. https://doi.org/10.1016/j.pquantelec.2023.100459
11. Khonina S.N., Alferov S.V., Karpeev S.V. Strengthening the longitudinal component of the sharply focused electric field by means of higher-order laser beams // Opt. Lett. 2013. V. 38. № 17. P. 3223. https://doi.org/10.1364/OL.38.003223
12. So S., Kim M., Lee D., et al. Overcoming diffraction limit: From microscopy to nanoscopy // Appl. Spectrosc. Rev. 2018. V. 53. № 2–4. P. 290–312. https://doi.org/10.1080/05704928.2017.1323309
13. Chen W., Zhan Q. Diffraction limited focusing with controllable arbitrary three-dimensional polarization // J. Opt. 2010. V. 12. № 4. P. 045707. https://doi.org/10.1088/2040-8978/12/4/045707
14. Pereira S.F., Van De Nes A.S. Superresolution by means of polarisation, phase and amplitude pupil masks // Opt. Commun. 2004. V. 234. № 1–6. P. 119–124. https://doi.org/10.1016/j.optcom.2004.02.020
15. Wang H., Sheppard C.J.R., Ravi K., et al. Fighting against diffraction: Apodization and near field diffraction structures // Laser & Photon. Rev. Photonics Reviews. 2012. V. 6. № 3. P. 354–392. https://doi.org/10.1002/lpor.201100009
16. Khonina S.N., Ustinov A.V., Pelevina E.A. Analysis of wave aberration influence on reducing focal spot size in a high-aperture focusing system // J. Opt. 2011. V. 13. № 9. P. 095702. https://doi.org/10.1088/2040-8978/13/9/095702
17. Zapata-Rodríguez C.J. Debye representation of dispersive focused waves // JOSA A. 2007. V. 24. № 3. P. 675. https://doi.org/10.1364/JOSAA.24.000675
18.Khonina S.N., Ustinov A.V., Volotovsky S.G. Comparison of focusing of short pulses in the Debye approximation // Computer Opt. 2018. V. 42. № 3. P. 432–446. https://doi.org/10.18287/2412-6179-2018-42-3-432-446
19. Khorin P.A., Dzyuba A.P., Khonina S.N. Optical wavefront aberration: Detection, recognition, and compensation techniques – a comprehensive review // Optics & Laser Technol. 2025. V. 191. P. 113342. https://doi.org/10.1016/j.optlastec.2025.113342
20. Lakshminarayanan V., Fleck A. Zernike polynomials: A guide // J. Modern Opt. 2011. V. 58. № 7. P. 545–561. https://doi.org/10.1080/09500340.2011.554896
21. Khonina S.N., Savelyev D.A. High-aperture binary axicons for the formation of the longitudinal electric field component on the optical axis for linear and circular polarizations of the illuminating beam // J. Exp. Theor. Phys. 2013. V. 117. № 4. P. 623–630. https://doi.org/10.1134/S1063776113120157
22. Betzig E., Trautman J.K., Harris T.D., et al. Breaking the diffraction barrier: Optical microscopy on a nanometric scale // Science. 1991. V. 251. № 5000. P. 1468–1470. https://doi.org/10.1126/science.251.5000.1468
23. Khonina S.N., Ponomareva E.D., Butt M.A. Study of superoscillating functions application to overcome the diffraction limit with suppressed sidelobes // Optics. 2021. V. 2. № 3. P. 155–168. https://doi.org/10.3390/opt2030015
24. Носов П.А., Морозов А.И., Мачихин А.С. Оптический метод бесконтактного контроля качества изготовления аксиконов // Оптический журнал. 2024. Т. 91. № 7. С. 62–70. http://doi.org/10.17586/1023-5086-2024-91-07-62-70
Nosov P.A., Morozov A.I., Machikhin A.S. Optical method for non-contact quality control of axicons // J. Opt. Technol. 2024. V. 91. № 7. P. 474. https://doi.org/10.1364/JOT.91.000474