ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2026-93-03-24-32

УДК: 535.421

Fourier modal method with explicit accounting for boundary conditions in the coordinate space for one-dimensional diffraction gratings of an arbitrary profile

For Russian citation (Opticheskii Zhurnal):

Спиридонов С.И., Щербаков А.А. Фурье-модальный метод с явной записью граничных условий в координатном пространстве для одномерных дифракционных решеток произвольного профиля // Оптический журнал. 2026. Т. 93. № 3. С. 24–32. http://doi.org/10.17586/1023-5086-2026-93-03-24-32

Spiridonov S.I., Shcherbakov A.A. Fourier modal method with explicit accounting for boundary conditions in the coordinate space for one-dimensional diffraction gratings of an arbitrary profile [in Russian] // Opticheskii Zhurnal. 2026. V. 93. № 3. P. 24–32. http://doi.org/10.17586/1023-5086-2026-93-03-24-32

For citation (Journal of Optical Technology):
-

 

Abstract:

Subject of study. The Fourier Modal Method with explicit accounting for boundary conditions in the coordinate space for one-dimensional gratings of an arbitrary profile. Aim of study. To generalize and develop the formulation of the Fourier Modal Method with explicit accounting for boundary conditions of the discontinuous components of the electric field inside the structure for the case of one-dimensional gratings of an arbitrary profile. Method. The research is carried out on the basis of theoretical analysis and numerical modeling. The proposed approach is based on a generalization of the reformulated Fourier Modal Method presented in the authors’ previous paper, where the boundary conditions for the discontinuous component of the electric field were explicitly taken into account. In this paper, the boundary conditions on slanted interfaces are taken into account within each layer of grating decomposition. Main results. The reformulated Fourier Modal Method has been developed that explicitly takes into account the boundary conditions in coordinate space for the discontinuous components of the electric field inside one-dimensional gratings of an arbitrary profile. This approach improves the accuracy of calculations in comparison with the classical formulation of the Fourier Modal Method. Practical significance. The developed approach can be used for the design and analysis of one-dimensional optical diffraction nanostructures, in the field of sensing and nonlinear optics applications.

Keywords:

Fourier Modal Method, diffraction efficiency, gratings with slanted walls, gratings of an arbitrary profile, near field

OCIS codes: 050.1970, 070.0070, 000.3860

References:
  1. Burckhardt C.B. Diffraction of a plane wave at a sinusoidally stratified dielectric grating. // JOSA. 1966. V.  56. №  1 P.  1502–1509. https://doi.org/10.1364/JOSA.56.001502
  2. Knop K. Rigorous diffraction theory for transmission phase gratings with deep rectangular grooves // JOSA. 1978. V.  68. №  9. P.  1206–1210. https://doi.org/10.1364/JOSA.68.001206
  3. Moharam M.G., Gaylord T.K. Rigorous coupled-wave analysis of planar-grating diffraction // JOSA. 1981. V.  71. №  7. P.  811–818. https://doi.org/10.1364/JOSA.71.000811
  4. Akhmedzhanov I.M., Kibalov D.S., Smirnov V.K. Comparative analysis of two methods for calculating reflectance of black silicon // Quant. Electron. 2015. V. 45. № P. 385. https://doi.org/10.1070/QE2015v045n04ABEH015415
  5. Song A. Y., Kalapala A. R. K., Zhou W., et al. First-principles simulation of photonic crystal surface-emitting lasers using rigorous coupled wave analysis // Appl. Phys. Lett. 2018. V.  113. №  4. P.  041106. https://doi.org/10.1063/1.5045486
  6. Gansch R., Kalchmair S., Genevet P., et al. Measurement of bound states in the continuum by a detector embedded in a photonic crystal // Light Sci. Appl. 201 V.  5. №  9. P.  e16147. https://doi.org/10.1038/lsa.201147
  7. Kim C., Lee B. TORCWA: GPU-accelerated Fourier modal method and gradient-based optimization for metasurface design // Comput. Phys. Commun. 2023. V.  282. P.  108552. https://doi.org/10.1016/j.cpc.2022.108552
  8. Robertson K. W., LaPierre R. R., Krich J. J. Efficient wave optics modeling of nanowire solar cells using rigorous coupled-wave analysis // Opt. Exp. 2019. V.  27. №  4. P.  A133–A147. https://doi.org/10.1364/OE.27.00A133
  9. Kwiecien P., Burda M., Richter I. Nonlocal Fourier modal method for analyzing nonlocal plasmonic periodic nanostructures // JOSA.  B. 2023. V.  40. №  3. P.  491–500. https://doi.org/10.1364/JOSAB.477327
  10. Fradkin I.M., Dyakov S.A., Gippius N.A. Fourier modal method for the description of nanoparticle lattices in the dipole approximation // Phys. Rev. B. 2019. V.  99. №  7. P.  0753 https://doi.org/1103/PhysRevB.99.075310
  11. Salakhova N.S., Fradkin I.M., S.A Dyakov, et al. Fourier modal method for moiré lattices // Phys. Rev. B. 2021. V.  104. №  8. P. 085424. https://doi.org/10.1103/PhysRevB.104.085424
  12. Defrance J., Schäferling M., Weiss T. Modeling of second-harmonic generation in periodic nanostructures by the Fourier modal method with matched coordinates // Opt. Exp. 2018. V.  26. №  11. P.  13746–13758. https://doi.org/10.1364/OE.26.013746
  13. Li L. Use of Fourier series in the analysis of discontinuous periodic structures // JOSA.  A. 1996. V.  №  9. P.  1870–1876. https://doi.org/10.1364/JOSAA.001870
  14. Lalanne P., Jurek M. P. Computation of the near-field pattern with the coupled-wave method for transverse magnetic polarization // J. Mod. Opt. 1998. V.  45. №  7. P.  1357–1374. https://doi.org/10.1080/09500349808230634
  15. Weismann M., Gallagher D. F. G., Panoiu N. C. Accurate near-field calculation in the rigorous coupled-wave analysis method // J. Opt. 20 V.  17. №  12. P. 125612. https://doi.org/10.1088/2040-8978/17/12/125612
  16. Spiridonov S., Shcherbakov A. A. Reformulated Fourier Modal Method with improved near field computations // J. Comput. Sci. 2023. V.  67. P.  101936. https://doi.org/10.1016/j.jocs.2022.101936
  17. Грейсух Г.И., Ежов Е.Г., Антонов А.И. и др. Сравнительный анализ оценки эффективности дифракции микроструктуры с двумя рельефами в видимом и двойном инфракрасном диапазонах в рамках скалярных и строгих дифракционных теорий // Оптический журнал. 2023. Т. 90. № 3. С. 26–37. http://doi.org/10.17586/1023-5086-2023-90-03-26-37

Greisukh G.I., Ezhov E.G., Antonov A.I., et al. Comparative analysis estimates for two-relief microstructure diffraction efficiency in the visible and dual-infrared ran ges in the framework of scalar and rigorous diffraction theories // J. Opt. Technol. 2023. V. 90. № 3. P. 119–124. https://doi.org/10.1364/JOT.90.000119

  1. Moharam M. G., Gaylord T. K. Diffraction analysis of dielectric surface-relief gratings // JOSA. 1982. V.  72. №  10. P.  1385–1392. https://doi.org/10.1364/JOSA.72.001385
  2. Peng S., Morris G. M. Efficient implementation of rigorous coupled-wave analysis for surface-relief gratings // JOSA.  A. 1995. V. 12. № 5. P. 1087–1096. https://doi.org/10.1364/JOSAA.12.001087
  3. Popov E., Nevière M., Gralak B., et al. Staircase approximation validity for arbitrary-shaped gratings // JOSA.  A. 2002. V.  19. №  1. P.  33–42. https://doi.org/10.1364/JOSAA.19.000033
  4. Popov E., Nevière M. Grating theory: new equations in Fourier space leading to fast converging results for TM polarization // JOSA.  A. 2000. V.  17. №  10. P.  1773–1784. https://doi.org/10.1364/JOSAA.17.001773
  5. Popov E., Nevière M. Maxwell equations in Fourier space: Fast-converging formulation for diffraction by arbitrary shaped, periodic, anisotropic media // JOSA.  A. 2001. V.  18. №  11. P.  2886–2894. https://doi.org/10.1364/JOSAA.18.002886
  6. Gushchin I., Tishchenko A. V. Fourier modal method for relief gratings with oblique boundary conditions // JOSA.  A. 2010. V.  27. №  7. P.  1575–1583. https://doi.org/10.1364/JOSAA.27.001575
  7. Shcherbakov A. A., Tishchenko A. V. Efficient curvilinear coordinate method for grating diffraction simulation // Opt. Exp. 2013. V.  21. №  21. P.  25236–25247. https://doi.org/10.1364/OE.21.025236